
Cryptanalysis of 2212 rounds of Gimli

Mike Hamburg∗

August 1, 2017

Abstract

Bernstein et al. have proposed a new permutation, Gimli, which aims to provide simple

and performant implementations on a wide variety of platforms. One of the tricks used to make

Gimli performant is that it processes data mostly in 96-bit columns, only occasionally swapping

32-bit words between them.

Here we show that this trick is dangerous by presenting a distinguisher for reduced-round

Gimli. Our distinguisher takes the form of an attack on a simple and practical PRF that should

be nearly 192-bit secure. Gimli has 24 rounds. Against 151
2 of those rounds, our distinguisher

uses two known plaintexts, takes about 264 time and uses enough memory for a set with 264

elements. Against 19 1
2 rounds, the same attack uses three non-adaptively chosen plaintexts, and

uses twice as much memory and about 2128 time. Against 22 1
2 rounds, it requires about 2138.5

work, 2129 bits of memory and 210.5 non-adaptively chosen plaintexts. The same attack would

apply to 231
2 rounds if Gimli had more rounds.

Our attack does not use the structure of the SP-box at all, other than that it is invertible,

so there may be room for improvement. On the bright side, our toy PRF puts keys and data in

different positions than a typical sponge mode would do, so the attack might not work against

sponge constructions.

1 Introduction

Permutation-based cryptography is attractive for lightweight devices because it can use a single

cryptographic primitive for many applications. However, many cryptographic permutations

perform well only on lightweight devices, or only on large devices, or only in hardware.

Bernstein et al. recently proposed Gimli in order to bridge this divide [1]. Gimli performs

passably well in hardware, in lightweight devices and in large devices, making it an attractive

option for future deployments.

One of Gimli’s innovations is that it processes most of its data in 96-bit columns (consisting

of three 32-bit words), and only swaps one word from each column every other round. This

improves performance on tiny devices, which can process one column at a time with little loss

∗Rambus Security Division

1



in performance. But we will show that it is dangerous, and leads to attacks on the reduced-

round permutation in practical applications. Our attack is not merely a distinguisher, but a key

recovery attack against a realistic deployment of Gimli. Furthermore, it only uses two chosen

plaintexts, and does not use the structure of the SP-box at all.

2 The Gimli permutation

Gimli is fully specified in [1]. Here we need only its overall structure. Let W be the space of all

32-bit words, and let C := W 3 be the space of all 96-bit columns. The SP-box is a permutation

P : C → C. For any permutation Q : S → S, let

Q×Q : S2 → S2

be the permutation defined by

(Q×Q)(x, y) := (Q(x), Q(y))

Let the permutation SmallSwap : C2 → C2 be defined as

SmallSwap ((a, b, c), (d, e, f))

:= ((d, b, c), (a, e, f))

Likewise, let BigSwap : C4 → C4 be defined as

BigSwap ((a, b, c), (d, e, f), (g, h, i), (j, k, l))

:= ((g, b, c), (j, e, f), (a, h, i), (d, k, l))

Let Swapi : (W 3)4 → (W 3)4 be SmallSwap× SmallSwap (plus a round constant which doesn’t

affect our analysis) if i ≡ 0 (mod 4), or BigSwap if i ≡ 2 (mod 4), or the identity otherwise.

Then the ith Gimli round is a permutation Gi : C4 → C4 is

Gi := Swapi ◦ (P × P × P × P )

An important observation for our attack is that 4 consecutive rounds of Gimli process the two

halves of the state separately until the final BigSwap. Let H4 : C2 → C2 be defined as

H4 := (P × P ) ◦ (P × P ) ◦
[
SmallSwap ◦ (P × P )

]
◦ (P × P )

so that four rounds of Gimli can be written as

R4 := G4i+2 ◦G4i+3 ◦G4i+4 ◦G4i+5 = BigSwap ◦ (H4 ×H4)

Gimli’s rounds count from 24 down to 1. Here we will analyze a reduced-round variant which

performs rounds 21 down to 2, less the final swap, so that it breaks down naturally into blocks

of R4. Call this function Gimli19.5. If we align to the beginning or end of Gimli, this attack

breaks one fewer round but otherwise works the same way. Our attack uses only H4 and H−14 ,

which we treat as black boxes, and BigSwap. We ignore the internals of H4, P and SmallSwap.

2



3 A PRF based on Gimli

We will analyze a natural pseudorandom function based on Gimli. This function takes a 192-bit

key k ∈ C2 and a 192-bit input x ∈ C2, and produces a 192-bit output y ∈ C2 by

F (k, x) := snd(Gimli(k, x))

where snd denotes the second half of the state. This function should have nearly 192 bits of

security against generic attacks1. However, we will show that with Gimli19.5, it only has 128

bits of security, and for Gimli22.5 it has only 138.5 bits of security. The reason is that there is

very little communication between the first and second halves of the state.

Note that Gimli’s word order goes along rows first, rather than down columns first. Fur-

thermore, most sponge modes xor keys into data before calling the permutation. So our attack

is unlikely to apply as written to, e.g., libhydrogen.

3.1 The 12-round core

For our pseudorandom F , the first four rounds and last 3 rounds of Gimli do almost nothing.

The first 4 rounds are

R4 = BigSwap ◦ (H4 ×H4)

and the last 3.5 rounds are H4 ×H4. That is,

F19.5(k, x) = H4(snd(R3
4(BigSwap(H4(k), H4(x)))))

Since H4 is efficiently invertible, the security of F19.5 is equivalent to that of

Core12(k, x) := snd(R3
4(BigSwap(k, x)))

4 A meet-in-the-middle attack

Here is our meet-in-the-middle attack on Core12, which therefore also breaks F19.5. A helpful

diagram of the attack on F19.5 is shown in Figure 1.

For this attack, we need only to query Core12(k, x) for two values x1, x2 which have the same

top row. That is, let

xi := (a, bi, ci), (d, ei, fi)

where a, b{1,2}, c{1,2}, d, e{1,2} and f{1,2} are arbitrary.2 Now, let the functions Ki,j : C3 → C3

be defined as

Ki,j((a, b, c), (d, e, f)) := (ki,j,1, b, c), (ki,j,2, e, f)

1We didn’t prove this. The best generic attack we found was to query about 2192/6 plaintexts, at which point a

balls-in-bins analysis suggests that there should be about a 6-way collision in ciphertexts. Then we can get the key

by guessing values for fst(Gimli(k, x)). This takes about about 2192/6 guesses in expectation, for a total of 2192/3

work.
2Thus this attack applies to Core12 in counter mode, but for F19.5 it requires chosen plaintexts.

3



P

P

P

P

P

P

P

P

64 6432

H4

H4 H4

k

H4 H4

64 128128

H4 H4

64 128128

H4 H4

64 128128

H4 H4

64 128128

y1,y2
(known)

guess
64 bits

make
tables
T1, T2
here

H4 H4

k x1,x2 (chosen)

H4 H4

64 128128

H4 H4

64 128128

H4 H4

64 128128

H4 H4

64 128128

y1,y2

check
against
T1, T2

guess
128
bits

192 bits

192 bits

same
in both
queries
x1, x2

x1,x2

Figure 1: Meet-in-the-middle attack against Gimli: 2128 complexity for 19.5 rounds.

where ki,j,1 and ki,j,2 are the ith pair of unknown 32-bit words which come from the key half in

the jth chosen plaintext block. We likewise define their duals

K̄i,j((a, b, c), (d, e, f)) := (k̄i,j,1, b, c), (k̄i,j,2, e, f)

where k̄i,j,1 and k̄i,j,2 were the words swapped out for ki,j,1 and ki,j,2. We will use K̄i,j when

running Gimli rounds backwards. Note that K1,1 = K1,2 always and K2,1 = K2,2 because of

how we chose the plaintexts; abbreviate these as K1 and K2 respectively. We see that

y1 := Core12(k, x1) = (K4,1 ◦H4 ◦K3,1 ◦H4 ◦K2 ◦H4 ◦K1)(x1)

y2 := Core12(k, x2) = (K4,2 ◦H4 ◦K3,2 ◦H4 ◦K2 ◦H4 ◦K1)(x2)

To reverse this function, we will guess the the two words swapped out at the end of each of

these applications. Let

bottom((a, b, c), (d, e, f)) := (b, c, e, f)

be the bottom 4 words of a given two columns. We make two tables T1, T2 containing sets of

264 128-bit values each, where

Tj := { bottom(H−14 (K̄4,j(yj))) }

for all 264 possible value pairs that could have been injected by K̄4,j . We then see that

bottom(H4(K2(H4(K1(xj))))) ∈ Tj

for j ∈ {1, 2}. We can then exhaust over the 2128 values which could have been injected by K1

and K2, and check if the results are in T1 and T2. Since the probability of a random element

4



being in both tables is 2−128, we expect to see only a few matching values. With a third chosen

plaintext, we can reduce that to one matching value with high probability.

After this entire procedure, we will have a single value (or perhaps a few candidates) for the

top 64 bits of the key after the first H4 step. Then we can brute-force the remaining unknown

128 bits, and output the key that it is consistent with F19.5(x1) and F19.5(y1).

4.1 138.5-bit attack on 22.5 (or 23.5) rounds

The same attack breaks Core16 and thus 23.5-round Gimli with 2138.5 work and 2129 bits of

memory. We use 210.5 chosen plaintexts xi, as before all with the same top two words. This

gives us 210.5 samples yi, where

yj := Core16(k, xj) = (K5,j ◦H4 ◦K4,j ◦H4 ◦K3,j ◦H4 ◦K2 ◦H4 ◦K1)(xj)

We again build sets Tj of 128-bit values from yj , but now guessing both K̄5,j and K̄4,j . There

would be 2128 elements in each set, but because the function to build the set is not a permutation,

there will only about 2128 · (1 − 1/e) distinct elements. Each set takes 2128 bits of memory to

describe, for a total of 2138.5 bits of memory and as much work. Running on the queries one

at a time reduces the memory usage to 2129 bits at a small cost in compute time: 2128 for the

current table, and 2128 to determine which keys have been ruled out.

After building the sets, we again guess the words injected by K1 and K2, and compute

(H4 ◦K2 ◦H4 ◦K1)(xj)

for each i ∈ [0, 210.5]. For each such j, with probability about 1/e this value won’t be in Tj , so

we can reject the guess. Our

log1−1/e2
−128 ≈ 210.5

queries will be enough to reject all but the correct guess, and perhaps a few wrong ones. We

can then brute-force the remaining 128 bits of the key as before.

This attack doesn’t apply to 23.5 rounds of the real Gimli: it breaks what would be rounds

25 through 2.5, but Gimli has only 24 rounds. So it only breaks 22.5 rounds of the real Gimli.

4.2 64-bit attack on 15.5 rounds

The same attack breaks 15.5 rounds with about 264 work. We make the same table, but now

we only have to guess the 64 bits injected by K1. This is only a 64-bit distinguisher and not a

key recovery attack. Probably the key can be recovered with a little additional work using the

structure of H4, but we didn’t investigate this.

5 Implementation

To confirm that our attacks works, implemented it on Gimli variants with reduced word sizes.

We implemented the 15.5-round attack on a version which uses 16-bit words, taking about 232

time and 232 · 64 memory instead of 264 time and 264 · 128 memory. We ran the attack on a

Skylake NUC we had lying around. We had to tweak the attack to take more time and less

5



memory by using approximate sets (i.e. Bloom filters), because our NUC didn’t have 232 · 64

bits = 32 GiB of memory, but otherwise it worked.

We implemented the 23.5 round attack on a Gimli variant with 8-bit words, taking about

237.5 time and 233 bits of memory (1 GiB) instead of about 2138.5 time and 2129 bits of memory.

For both attacks, we just confirmed that they gave the right K1, and didn’t bother brute-

forcing the rest of the key. Both attacks completed within a few hours on one core.

6 Future work

It would be interesting to turn the 64-bit attack into a key recovery attack. Also, we are curious

whether properties of the SP-box can be used to improve this attack, or if it can be changed

from a table-based attack to a rho attack. Finally, it would be interesting to see whether the

same attacks can be used to break other uses of reduced-round Gimli, e.g. finding collisions in

the hash function, and whether the attack can be adapted to sponge modes.

7 Conclusion

Gimli’s slow diffusion is a serious weakness. The linear layer should be replaced, and preferably

should be performed every round instead of every other round. This will reduce Gimli’s perfor-

mance, but it is important for security. In the mean time, Gimli is not appropriate for scenarios

requiring more than 128-bit security. Fortunately, our attack is mitigated by the modes used in

a typical sponge construction.

8 Acknowledgements

Special thanks to Mark Marson for editing this paper.

References

[1] Daniel J. Bernstein, Stefan Kölbl, Stefan Lucks, Pedro Maat Costa Massolino, Florian

Mendel, Kashif Nawaz, Tobias Schneider, Peter Schwabe, François-Xavier Standaert, Yosuke

Todo, and Benôıt Viguier. Gimli: a cross-platform permutation. Accepted to CHES, 2017.

http://eprint.iacr.org/2017/630.

6


