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Abstract

Key exchange algorithms based on Ring and Module Learning With

Errors (RLWE and MLWE) trade efficiency against failure probabil-

ity. Some systems – such as LAC, Round5 and ThreeBears– reduce

failure probability by using an error-correcting code. This improves

efficiency, but makes the failure probability difficult to evaluate rigor-

ously, and risks dramatically underestimating that failure probability.

In this note, we describe work to bound the failure probability of

ThreeBears, rather than estimating it. We did not quite succeed in

proving a rigorous bound – our estimates are conservative but include

heuristics. We primarily studied the failure probability per message.

We also investigated the success probability for straightforward CCA

attacks requiring at most 2{128,192,256} pre-quantum or post-quantum

work. Our techniques may also be applicable to Round5 and LAC.

1 Introduction and related work

Several candidates for post-quantum encryption and key exchange are based

on the LPR encryption system [LPR10], which derives its security from

the Ring Learning With Errors (RLWE) problem. This encryption tech-

nique was popularized by the NewHope key exchange algorithm [ADPS15,

PAA+17], and is also used in LAC [LLJ+17]. Other LPR-like systems in-
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clude Kyber [BDK+17] which uses Module Learning With Errors; Three-

Bears [Ham17] which uses Integer Module Learning With Errors (I-MLWE);

and Round5 [BGL+18] which uses Ring Learning With Rounding (RLWR).

Collectively, we will call these systems “LPR variants”.

When used for encryption with a long-term key, lattice schemes such as

LPR must be protected against chosen-ciphertext attacks [HNP+03], typi-

cally using a variant of the Fujisaki-Okamoto transform [FO99]. However,

chosen-ciphertext attacks are still possible if the underlying encryption al-

gorithm has imperfect correctness; that is, if it has a nonzero probability of

decryption failure.

The correctness of these algorithms depends, roughly, on the convolution of

i.i.d. random vectors not exceeding certain thresholds. As such, LPR vari-

ants usually have a nonzero probability of decryption failures. The failure

probability is related to the amount of noise added, which also influences the

security, and this creates a tradeoff of security vs. performance vs. failure

probability. Some LPR variants, such as NTRU LPRime [BCLv17], replace

the i.i.d. random vectors with fixed-weight ones and use parameters that

eliminate decryption failures. This makes analysis simpler at the cost of

performance and bandwidth.

In the opposite direction, the ThreeBears, Round5 and LAC algorithms

use error-correcting codes to reduce failure probability.1 This technique

improves efficiency, but makes it very difficult to accurately assess failure

probability – a problem that threatened CCA attacks on earlier versions

of both LAC [AS18, Ham18a] and Round5 [Ham18b]. It is usually easy to

explicitly calculate the probability p that a given bit of the message will

decrypt incorrectly. The näıve estimate is that an e-error correcting code

on n bits would reduce the failure rate to around
(
n
e+1

)
· pe+1, since a failure

does not occur unless at least e+1 bits flip. However, the actual failure rate

may be much higher, because failures are correlated.

1Arguably, so too does the 2015 version of NewHope: its reconciliation mechanism is

equivalent to a 4-bit repetition code with soft-decision decoding.
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1.1 Related work: D’Anvers-Vercauteren-Verbauwhede

Two recent papers by D’Anvers, Vercauteren and Verbauwhede [DVV18b,

DVV18a] analyze CCA attacks on RLWE schemes, and the dependence of

failure rates on the norm of the noise in the ciphertext and private key.

The original failure analysis for ThreeBears used a similar technique to

relate the decryption failure rate to the norm of the noise in the cipher-

text. Additionally, it takes into account a detail that affects ThreeBears,

but not most other RLWE schemes. ThreeBears’ modulus has the form

N = xD − xD/2 − 1, so a single large coefficient can contribute to two large

coefficients when reduced mod N . As a result, bit flips are correlated if they

are separated by D/2 positions. A more serious version of this problem was

present in the first version of Round5.

We were not entirely satisfied with this sort of analysis, because there may

be other, unknown forms of correlation that contribute to the failure rate.

Accordingly, in this work we aimed to strictly and rigorously bound (i.e.

overestimate) the failure rate of ThreeBears, rather than estimating it

accurately. We were not quite able to accomplish this – we needed a few

heuristics and floating-point arithmetic.

Our analysis of CCA attacks is roughly the same as in [DVV18b], but re-

worked to mesh with our more conservative failure estimation technique.

It still analyzes only a particular, relatively straightforward attack. How-

ever, we did not attempt to analyze how many decryption failures would be

enough to recover a ThreeBears key. [DVV18b] estimates work to produce

many failures using a non-adaptive attack, but we were concerned that an

adaptive attack would be much more powerful, so we only model the effort

required to find the first decryption failure.

3



2 Preliminaries

2.1 Notation

Let R be the real numbers, and R≥0 be the non-negative real numbers. Let

〈~x, ~y〉 be the inner product of two vectors over Rn.

Let
[
f(x) : x← D

]
denote the expectation of a function f over a prob-

ability distribution D. For p > 0 and f(x) ≥ 0, let
[
f(x) : x← D

]
p

be the p-norm (a.k.a. the weighted p-power mean) of f over D, namely
p

√[
f(x)p : x← D

]
.

We make heavy use of the weighted power means inequality, which states

that if p ≥ q > 0 and f(x) ≥ 0 for all x, then[
f(x) : x← D

]
p
≥
[
f(x) : x← D

]
q

2.2 Encryption from Learning with Errors

The key exchange algorithms we study are derived from the Lyubashevsky-

Peikert-Regev (LPR) RLWE encryption system [LPR10], which we summa-

rize as follows. Let R be a ring, and let χ be a distribution on R, producing

elements which are in some way “small” with high probability. Let d be

a module dimension. Let Encode: M → R map a message into the ring

and Decode: R→M an inverse map, which is immune to “small” changes.

Specifically, suppose there is a subset Safe ⊂ R of the ring, so that for all

messages m and for all elements ε ∈ Safe,

Decode(Encode(m) + ε) = m

Let Round be an algorithm which rounds a ring element to reduce the num-

ber of bits required to represent it. The encryption and decryption algo-

rithms are shown in Figure 1. This work can easily be extended to cases

where other elements of the public key or ciphertext are rounded, or where

a different χ is used for the ciphertext and secret key or for s and ε. The
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Keygen() :

s← χd; ε
R← χd;

A
R← Rd×d;

X ← A · s+ ε;

sk← s; pk← (A,X);

Dec(sk, c) :

s← sk; (Y, Z ′)← c;

m′ ← Decode(Z ′ − Y s)

Enc(pk,m) :

(A,X)← pk;

s′ ← χd; ε′
R← χd; ε′′ ← χ;

Y ← s′
>
A+ ε′

>
;

Z ← s′
>
X + ε′′ + Encode(m);

Z ′ ← Round(Z);

c← (Y,Z ′);

Figure 1: LPR variant under study.

above description applies to ThreeBears, Kyber, NewHope and LAC, ex-

cept that ThreeBears doesn’t compute Z ′ − Y s in the ring, instead ex-

tracting m by comparing the digits of Z ′ with those of Y s. When written as

a deterministic algorithm, Enc takes an additional input: a string ρ which

is used to choose the 2d+ 1 samples from χ.

Let r := Z ′ − Z be the information lost by rounding Z. The encryption

scheme’s correctness stems from the fact that

Z ′ − Y s = (Z ′ − Z) + s′
>
X + ε′′ + Encode(m)− (s′

>
A+ ε′

>
)s

= r + s′
>

(A · s+ ε) + ε′′ + Encode(m)− (s′
>
A+ ε′

>
)s

= Encode(m) + r + s′
>
ε+ ε′′ − ε′>s

Therefore Decode(Z ′ − Y s) = m, and decryption succeeds, so long as (r +

s′>ε + ε′′ − ε′>s) is sufficiently “small”, e.g. the absolute value each of its

coefficients is less than some threshold t.
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2.3 Details for ThreeBears

For ThreeBears with Z ′ rounded to ` = 4 bits and a digit x = 210, the

coefficients of ε, ε′, ε′′, s, s′ are drawn i.i.d. from the same distribution χv of

variance v, where if v ≤ 1/2, then

χv :=

{
0 with probability 1− v
±1 with probability v/2 each

and if 1/2 < v ≤ 1, then

χv :=


0 with probability (5− 2v)/8

±1 with probability 1/4 each

±2 with probability (2v − 1)/16 each

Furthermore, an error in position i cannot occur unless

yi − zi + ri − 1 ≥ x/4 = 256 or yi − zi + ri ≤ −x/4 = −256

where yi is the ith digit of Y s and zi is the ith digit of Z ′, and the rounding

component ri
R← [1 − x/2`+1, x/2`+1] = [−31, 32]. See Appendix A for a

proof of this.

The rest of this paper calculates yi − zi using polynomial arithmetic. The

difference between this and integer arithmetic is that carries might propagate

into yi and zi. However, with overwhelming probability (around 1− 2−1000)

the carries differ by at most 1. This lowers the threshold to 255 instead of

256.

2.4 Fujisaki-Okamoto transform

We follow [DVV18a] in studying CCA attacks on LWE-based encryption

schemes that use some variant of the Fujisaki-Okamoto (FO) transform [FO99].

We give a simplified version this transform as follows.

The FO transform is built on a public-key encryption scheme. Let K and

K̂ be the sets of public and private keys for this scheme, respectively. Let
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Encaps(pk) :

m
R←M ;

(ρ, τ, s)← H(pk,m);

c← Enc(pk,m, ρ);

return ((c, τ), s);

Decaps(sk,pk, (c, t)) :

m′ ← Dec(sk, c);

(r′, t′, s′)← H(pk,m′);

if (Enc(pk,m′, ρ′), τ ′) = (c, τ) then return s;

else return ⊥;

Figure 2: Simplified Fujisaki-Okamoto transform from encryption to key

exchange. The LAC, Kyber, Round5 and ThreeBears algorithms use this

approach, but with a zero-length tag τ .

Enc : (K ×M × R) be a deterministic encryption function taking a public

key pk ∈ K, a message m ∈M , and a random string ρ ∈ R, and returning a

ciphertext c ∈ C. Let Dec : (K̂ ×C)→M be the corresponding decryption

algorithm. Let S be a space of symmetric keys. Let T be a set of “tags”;

these are used in certain proofs of security for FO, and are typically either

absent or the same size as the message. Let H : (K ×M) → (R × T × S)

be a hash function, which is modeled as a random oracle. Then we can

perform a key exchange which takes a public key and returns a ciphertext

and a shared symmetric key, as shown in Figure 2.

Decapsulation can fail by returning a special symbol ⊥ /∈ S, or succeed by

returning an element of S. It can succeed only if (c, τ) is a well-formed

ciphertext, meaning a possible output of the Encaps routine; but it might

also fail on some well-formed ciphertexts. This will happen if H(pk,m) =

(ρ, τ, s) such that

Dec(sk,Enc(pk,m, ρ)) 6= m

for some message m and keypair sk,pk.

The intuition behind the FO transform is that an adversary cannot learn

much by asking a would-be victim to decrypt chosen messages. This is

because (under suitable assumptions) the adversary cannot create a well-

formed ciphertext (c, τ) without knowing that it is well-formed or without
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knowing m. Therefore the adversary (and the CCA simulator) knows the

complete output of Decaps without calling it.

However, the adversary does learn whether a well-formed ciphertext decrypt

successfully or not. This information typically weakens the security of the

system, and over several failed decryptions might make it feasible or even

easy to recover the private key. In this paper, we assume that any failed

decryption may result in a successful attack.2 We believe this conservatism

is warranted: while a single decryption failure is unlikely to break the private

key outright, it may give enough information that further decryption failures

will be significantly easier to cause. Furthermore, if the adversary is querying

many different keys, the first failure is likely to come from a weak key, i.e.

one with larger-than-normal amounts of noise, and that key will be more

prone to further failures.

3 CCA attack model

In existing CCA attacks, the adversary has very limited ability to predict

which messages will fail to decrypt with a given key. Nor are existing attacks

able to determine which keys are more likely to have decryption failures. But

such attacks are have not been proved impossible, so security proofs of the

FO transform make use only of the scheme’s overall failure probability. With

attacks on n public keys, they would instead have a term like[(
max
i

Pr (fail : encrypt to ki)

)
: ki ← Keygen() for i = 0 to n− 1

]

For provable security, we cannot go beyond these calculations. But we also

wish to study attacks that follow the pattern of existing ones, which we

instantiate as the following “key-agnostic” attack.

First, the attacker chooses a target public key pk at random from a large set.

He then encrypts a random message to that public key. The ciphertext noise

2This makes “failure” nearly synonymous with “success”.
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is (s′, ε′, ε′′), plus rounding noise r = Round(Xs′+ ε′+ ε′′)− (Xs′+ ε′+ ε′′).

Since the public key was chosen at random, we model r as independent of

(s′, ε′, ε′′); this is likely true for most LPR variants but especially for Three-

Bears3. Without recovering any information about the private randomness

(s, ε), the adversary (and this paper) estimates the probability that decryp-

tion will fail as if they were chosen randomly from χ:

Pr (Fail) ≈ Pr
(
r + s′

>
ε+ ε′′ − ε′>s /∈ Safe : (s, ε)← χ2d

)
He then sends the message if the estimated Pr (Fail) reaches some threshold4

of the adversary’s choice, or otherwise falls into some set Fpk. If it does cause

a decryption failure, then the adversary somehow breaks that recipient’s

key.

Note that choosing a new key each time makes the attack successful more

often, since by assumption the attacker does not know which keys may be

weak. If each key k is queried nk times, success probability for the attack

is

Pr (attack succeeds) = 1−
∏
k

(1− Pr (Fail : k))nk

By the weighted power means inequality, for nk > 1,[
(1− Pr (Fail : k))nk : k ← Keygen()

]
≥
[
1− Pr (Fail : k) : k ← Keygen()

]nk
where the left-hand side is the probability of no failures in nk queries to

the same key, and the right-hand side is the probability of no failures in nk

queries to nk different randomly-chosen keys. So sending each query to a

different key maximizes the success probability of the attack.

3Treat X as being chosen after (s′, ε′, ε′′). For a random public key, X is indistin-

guishable from random. Furthermore ThreeBears’ ring has no zero divisors, so Xs′ is

uniform if s′ 6= 0, which happens with overwhelming probability.
4It might be possible to optimize this threshold, or to analyze systems with an exact

threshold of, say, 2−64. Our analysis doesn’t do this, and instead analyzes the expected

value of Pr(Fail) and analogous expressions for quantum attack. While we would prefer a

tighter analysis, this does have the advantage that it will probably still be an overestimate

if black-box Grover’s algorithm is not optimal.
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Let c abbreviate the ciphertext and its randomness. For q queries, the attack

requires work proportional to

q/Pr
(
c ∈ Fpk : (sk, pk)← Keygen(),m←M, c← Enc(pk,m)

)
which we abbreviate as 1/Pr

(
c ∈ Fpk

)
. The attack succeeds with probability

at most

q · Pr
(
Fail : c ∈ Fpk

)
As with many brute-force attacks, this key-agnostic attack has its work,

success probability and number of queries all directly proportional. In the

lower limit of 1 query, the attack works with one unit of work, and success

probability equal to the failure probability of the encryption scheme. We are

more interested in the opposite limit, in which the attack works with high

probability. As in [DVV18b], we estimate the number of queries required

so that this latter quantity approaches 1, in which case the attack succeeds

with probability about 1− 1/e.

We use two different approaches to model quantum attacks using Grover’s

algorithm. Grover’s algorithm is depth-bounded, speeding up queries by a

factor of about the maximum quantum query depth, which is realistically less

than 264. See e.g. [AHU18], Lemma 2: if P is a random predicate modeled

as a quantum random oracle, which obtains for any input with probability

at most ε, then the probability to find a preimage using q queries at depth d

is at most 4(q+1)(d+1)ε, where the leading 4 is not tight. For simplicity, we

model this as simply allowing the adversary a factor of 264 more work.

Alternatively, we could allow the attacker infinite depth. This replaces the

amount of time taken per query with the square root of the same. We unify

these two cases by calculating the work as 1/ g

√
Pr
(
c ∈ Fpk

)
, where g = 1

for classical attack and g = 2 for quantum.

4 Bounding CCA attack success

Let’s begin bounding the success probability of CCA attacks. We may

need to analyze more than one way a decryption could fail. In the case of
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ThreeBears, we need to break up failures according to the bit positions

that decrypted incorrectly. So we will use a set F of failure modes, such

that decryption failure cannot occur unless some f ∈ F occurs.

Theorem 1 (g, k bounding technique). Let C be a probability distribution.

Suppose a stateless algorithm A repeatedly chooses c ← C from an oracle,

then chooses to either query c or not. If A queries c, then the events in

some collection F of events may occur. A repeats this process until it makes

q queries. Let δ be the probability that any event in F happens on each

query.

Let g ∈ {1, 2}. Let w be the expected number of samples of C per query, and

let work := q g
√
w. Let

δk :=
∑
f∈F

[
Pr (f : c) : c← C

]
k

Then

Pr (an event in F occurs) ≤ qδ ≤ q1−g/k · workg/k · δk

Furthermore if k > g and δ ≥ 1/q, then

q ≥ (workg · δkk)−1/(k−g)

Finally, if A queries every sample, then δ = δ1.

Proof. See Appendix B.

4.1 Hoeffding bounds

To estimate δk, we use Hoeffding’s technique for bounding probabilities. Let

D be a probability distribution, and t ∈ R be a threshold. Then

Pr (x ≥ t : x← D) ≤ min
λ≥0

[
eλ(x−t) : x← D

]
This follows from the observation that eλ(x−t) ≥ 1 whenever x ≥ t. Likewise,

let D be a probability distribution over Rn, and let ~t ∈ Rn be a threshold.
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Then

Pr
(
~x � ~t : ~x← D

)
≤ min

~λ�0

[
e〈
~λ, ~x−~t〉 : ~x← D

]
where ~x � ~t means that each coordinate of ~x is greater than or equal to the

same coordinate of ~t.

4.2 Applying the Hoeffding technique

Let Q be the rank-3 tensor (rank-2 contravariate and rank-1 covariate) that

maps the recipient’s noise (s, ε) and the adversary’s noise (s′, ε′) to the dif-

ference sε′ − s′ε. Treat the inputs as vectors in R2dD, where D is the ring

dimension and d is the module rank. Treat the output as a vector in Rb,
covering only the positions which are used to transmit the message. Con-

sider a failure class f consisting of one or more positions i and signs signi by

which

signi · (sε′ − s′ε+ ε′′ + r)i ≥ ti

Let Vf be the set of vectors ~λ � 0 whose coefficients are nonzero only in

those positions. For a vector ~λ, let ~λsigned be the vector whose ith coefficient

is signiλi. Then

Pr
(
f : s′, ε′, ε′′, r

)
= Pr

(
signi · (sε′ − s′ε+ ε′′ + r) � ti : s, ε← χ2dD

)
≤ min

~λ∈Vf

[
e〈Q(s,ε; s′,ε′), ~λsigned〉+〈~λsigned, ε′′+r〉−〈~λ, ~t〉 : s, ε← χ2dD

]
= min

~λ∈Vf

[
e〈Q(s,ε; s′,ε′), ~λsigned〉 : s, ε← χ2dD

]
· e〈~λsigned, ε′′+r〉−〈~λ, ~t〉

under the assumption that r, s′ and ε′ are independent. Therefore[
Pr
(
f : s′, ε′, ε′′, r

)
: s′, ε′, ε′′, r

]
k

≤ min
~λ∈Vf


[[
e〈Q(s,ε; s′,ε′), ~λsigned〉 : s, ε← χ2dD

]k
: s′, ε′ ← χ2dD

]
·
[
ek〈

~λsigned, ε
′′+r〉−k〈~λ, ~t〉 : ε′′, r

]


1
k
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The lower term
[
ek〈

~λsigned, ε
′′+r〉−k〈~λ, ~t〉 : ε′′, r

]
is easy enough to compute,

since the coefficients of ε′′ and those of r are all independent.

The upper term is more difficult. To simplify it slightly, note that s and ε,

and likewise s′ and ε′, are 2d values chosen i.i.d from the same symmetric

distribution. Furthermore, the bilinear form 〈Q(s, ε; s′, ε′), λsigned〉 is block-

diagonal with d copies of some block M~λ
, and another d copies of its negation

(which has the same expectation due to symmetry). So the upper term is

equal to [[
e~x
>M~y : ~y ← χ

]k
: ~x← χ

]2d
Therefore let

η(M,k, χ) :=

[[
e~x
>M~λ

~y : ~y ← χ
]k

: ~x← χ

]
so that[

Pr
(
f : s′, ε′, ε′′, r

)
: s′, ε′, ε′′, r

]
k

≤ min
~λ∈Vf

(
η(M~λ

, k, χ)2d ·
[
ek〈

~λsigned, ε
′′+r〉−k〈~λ, ~t〉 : ε′′, r

]) 1
k

Estimating the ROM proof term is very similar, but in this case the cal-

culation is done with the key randomness (s, ε) known and the ciphertext

randomness (s′, ε′, ε′′) unknown. Swapping (s, ε) for (s′, ε′) has no effect

on most schemes due to symmetry, and making (s′, ε′) unknown simply re-

places[
ek〈

~λsigned, ε
′′+r〉−k〈~λ, ~t〉 : ε′′, r

] 1
k

with
[
e〈
~λsigned, ε

′′+r〉−〈~λ, ~t〉 : ε′′, r
]

It remains to compute, or at least estimate, η. We will show two methods to

do this: one exact (up to numerical precision) and one approximate.
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4.3 Exact solution: pebbling

Note that η(M,k, χ) is invariant under permutations of the rows and columns

of M . Suppose we have rearranged M as block-diagonal; then

η(M,k, χ) =
∏

block B

η(B, k, χ)

While we do not know how to compute η(B, k, χ) in general, the following

theorem shows that it can be computed when each block is close enough to

diagonal:

Theorem 2 (Pebbling algorithm). Suppose that for a b×b matrix B, Bi,j 6=
0 only when

0 ≤ i− j mod b ≤ `

for some small lag `. Suppose the distribution χ can take n different val-

ues in each coordinate. In this case, there is an algorithm which computes

η(B, k, χ) numerically in time O(b · n3`).

Proof. We present this algorithm in Appendix C.

4.4 Approximate solution: Gaussian heuristic

The pebbling technique takes time exponential in `, so it is practical only

when ` is small. A simpler but imprecise solution is to approximate χ

as Gaussian with variance v = var(χ), in which case η(M,k, χ) can be

determined exactly:

Theorem 3 (Gaussian heuristic). If χ is the Gaussian distribution with

mean 0 and variance v, and if the matrix I − kv2M>M is positive-definite,

then

η(M,k, χ) =
1√

det(I − kv2M>M)

Proof. See Appendix D.

This heuristic tends to be dominated by the long tails of the Gaussian dis-

tribution, which a binomial distribution lacks. Therefore it generally gives
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answers larger than the actual η, but we haven’t proved this. In particular,

while η(M,k, χ) is always finite for bounded distributions χ, the Gaussian

approximation can diverge.

4.5 Putting it all together

We recall from Theorem 1 that for all k ≥ g,

Pr (Any failure occurs) ≤ q(k−g)/k ·
∑
f∈F

[
Pr (f : c) : c← C

]
k
· workg/k

and for a failure class f, we can bound:

[
Pr (f : c) : c← C

]
k
≤ min

~λ∈Vf

(
η(M~λ

, k, χ)2d ·
[
e〈
~λsigned, ε

′′+r〉−〈~λ, ~t〉 : ε′′, r
]) 1

k

Furthermore Theorem 2 gives us a way to compute η(M~λ
, k, χ) in some cases,

and Theorem 3 gives us a way to estimate it in all other cases. For a given

k, we can therefore compute or estimate all the inner terms efficiently, and

can approximate the minimum for each f using gradient descent on ~λ. The

bound from Theorem 1 then lets us conservatively estimate the overall failure

probability and the success probability for the key-agnostic attack.

5 Results for ThreeBears

We ran this technique on the CCA-secure instances of ThreeBears. Three-

Bears sends data at the 256+18 positions {0, . . . , 136} and {175, . . . , 311}.
There are two special classes of failures for ThreeBears:

• “Opposed” failures of the form {i, i+D/2, j}.

• “Sequential” failures of the form {i, (i+ j)/2, j}.

We calculated for all classes of failures up to the following symmetry classes:

• Toggling the sign of the failure in all positions.
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• For opposed failures {i, i+D/2, j} and i−j isn’t divisible by 4, toggling

the sign of the failure at j.

• For sequential failures, toggling the sign of the middle element.

• Reflecting all positions across the midpoint of 156.

For most of our calculations, we used the pebbling method for opposed an

sequential failures, and the Gaussian heuristic for the other cases. How-

ever, BabyBear’s larger variance makes the pebbling method quite slow.

Therefore we also used the Gaussian heuristic for sequential failures on some

calculations for BabyBear. These calculations are marked †, and are likely

to give higher estimates than otherwise.

We tracked at all times the contribution pmax of the most significant failure

class, and skipped certain calculations which would contribute more than 224

times less. We observed that if f1 and f2 had the same spacing between failing

bit positions, but f2’s coefficients were further on average from D/2, the class

f1 contributed more to the overall estimates. (This is because ThreeBears’

reduction mod N amplifies the noise more in the center digits than at the

ends.) Accordingly, if f1 contributed p ≤ pmax/2
32, we skipped computing

all shifts f2, instead entering p · 28. The 28 is a fudge factor, in case the

contribution of f2 should somehow be greater than p. This elision never

contributes more than pmax/2
24. We also aborted gradient descent either

immediately, or after one descent step, upon reaching pmax/2
24.

We didn’t test all values of k for reasons of compute time. Instead we chose

k = 1 to estimate the total failure probability, and a few values k > 2

based on runs on a subset of the failure classes. The results are shown in

Table 1.

We also aimed to estimate the expected maximum failure probability in

K = 264 keys, which is used in the provable IND-CCA security bound. This

is shown in Table 2. We see that the best results are close to K · δ, where

δ is the overall failure probability. This suggests, somewhat unsurprisingly,

that failures are usually caused by a weak (failure-prone) key combined with

a failure-prone ciphertext.
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Failure prob. Key-agn. CCA “bound”

System work claim “bound” maxdepth queries k

BabyBear r1

(v = 5/8, d = 2)
128 -135 -128

classical ∞ 1

64 54 4

∞ 48 4

MamaBear r1

(v = 1/2, d = 3)
192 -147 -141

classical 65 8

64 57 8

∞ 45 8

PapaBear r1

(v = 3/8, d = 4)
256 -188 -188

classical 99 6

64 86 6

∞ 62 8

BabyBear r2

(v = 9/16, d = 2)
128 -156 -156

classical ∞ 1

64 68† 2

∞ 68† 2

MamaBear r2

(v = 13/32, d = 3)
192 -206 -206

classical ∞ 1

64 110 3

∞ 93 3

PapaBear r2

(v = 5/16, d = 4)
256 -256 -256

classical ∞ 1

64 124 3

∞ 97 3

Table 1: Conservative estimates (“bounds”) of log2 failure probabilities and

log2 number of decryption queries required for key-agnostic CCA attack.

The work column is the allowed work for the system’s claimed NIST class.

The maxdepth column indicates the log2 maximum depth of the quantum

computation, which is 0 for a classical computer. Queries=∞ means that

the attack is ruled out by the work limit.
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System work single-key 264 keys k

BabyBear r2 128 -156 -103† 2

MamaBear r2 192 -206 -150 1.75

PapaBear r2 256 -256 -200 1.5

Table 2: Conservative estimates of the failure probability of the weakest key

in 264 keys, as required by the security proof.

6 Conclusions

We have shown a technique to conservatively estimate the failure proba-

bility of lattice cryptosystems that use error-correcting codes, in particular

ThreeBears. The estimation technique uses a few heuristics: that nu-

merical precision is sufficient; and in some cases the Gaussian heuristic for

η. To save computation, we also assumed that failure probability falls (or

at least rises by a factor of ≤ 28) as the failing bit positions move away

from the center, but in principle this is not needed. We have applied the

technique to estimating work and success probabilities for a limited class of

chosen-ciphertext attacks on ThreeBears. The same technique should be

applicable to Round5.

6.1 Future work

We would like to tighten this analysis and improve its rigor. Possibly the

Gaussian heuristic can be proved, perhaps with a variant of the Hanson-

Wright inequality. We are also not sure that the straightforward attack is

optimal, and would like to prove this for RWLE schemes.

Even if a tight rigorous bound cannot be obtained, we would like to over-

estimate the failure probability by a smaller margin. Perhaps multivariate

Mills ratios are the place to start on this. Finally, hopefully this analysis

can be applied to other proposed KEMs, such as Round5 or LAC.
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A Details of ThreeBears error bounding

Let extract`(Z, i) :=
⌊
zi·2`
x

⌋
be the top ` bits of zi, where zi is the i’th digit

of Z in radix x = 210

ThreeBears sends in the ith position the value

encri := extract4(Z, i) + 8 ·mi mod 16
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It calculates

m′i :=

⌊
2 · encri − extract5(Y s, i)

24

⌉
mod 2

=

⌊
2 · encri − extract5(Y s, i) + 23

24

⌋
mod 2

=

⌊
2 ·
⌊
zi/2

6
⌋

+ 2 ·m−
⌊
yi/2

5
⌋

+ 23

24

⌋
mod 2

Let ri := 26 ·
⌊
zi/2

6
⌋
−zi+25 ∈ [−31, 32] be an almost-zero-centered amount

lost by truncating zi. Then

m′i =

⌊
2 · (zi + ri − 25)/26 + 2 ·mi −

⌊
yi/2

5
⌋

+ 23

24

⌋
mod 2

=

⌊
(zi + ri)/2

5 − 1−
⌊
yi/2

5
⌋

+ 23

24

⌋
+mi mod 2

=

⌊
(zi + ri)/2

5 − 1 +
⌊
(25 − 1− yi)/25

⌋
+ 23

24

⌋
+mi mod 2

Now the numerator is an integer, so the inner floor has no effect. There-

fore

m′i =

⌊
(zi + ri)/2

5 − 1 + ((25 − 1− yi)/25) + 23

24

⌋
+mi mod 2

=

⌊
zi + ri − yi − 1 + 28

29

⌋
+mi mod 2

This means that m′i is the same as mi unless

zi + ri − yi − 1 ≥ 28 or zi + ri − yi ≤ −28

as claimed.

B Proof of the bounding technique

Theorem 1 (g, k bounding technique). Let C be a probability distribution.

Suppose a stateless algorithm A repeatedly chooses c ← C from an oracle,
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then chooses to either query c or not. If A queries c, then the events in

some collection F of events may occur. A repeats this process until it makes

q queries. Let δ be the probability that any event in F happens on each

query.

Let g ∈ {1, 2}. Let w be the expected number of samples of C per query, and

let work := q g
√
w. Let

δk :=
∑
f∈F

[
Pr (f : c) : c← C

]
k

Then

Pr (an event in F occurs) ≤ qδ ≤ q1−g/k · workg/k · δk

Furthermore if k > g and δ ≥ 1/q, then

q ≥ (workg · δkk)−1/(k−g)

Finally, if A queries every sample, then δ = δ1.

To prove this theorem, we begin with two lemmas derived from the weighted

power means inequality. The first lemma bounds the adversary’s work and

success in a manner independent of Q, the unknown subset of ciphertexts

that the adversary chooses to query:

Lemma 1. Let C be a distribution over a space C; Q ⊆ C a subset of its

range, k ≥ g ≥ 1 be real, and f a function C → R≥0 be a non-negative

function. Then

g
√

Pr (c ∈ Q : c← C)
[
f(c) : c← C, c ∈ Q

]
≤
[
f(c) : c← C

]
g

Proof. By the weighted power means inequality,[
f(c) : c← C, c ∈ Q

]
≤
[
f(c) : c← C, c ∈ Q

]
g
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Therefore

g
√

Pr (c ∈ Q : c← C) ·
[
f(c) : c← C, c ∈ Q

]
≤ g

√
Pr (c ∈ Q : c← C)

[
f(c)g : c← C, c ∈ Q

]
= g

√∑
c∈Q

Pr (c← C) · f(c)g

≤
[
f(c) : c← C

]
g

because f(c) is non-negative.

Lemma 2. Let C be a distribution on a space C, and let f : C → R≥0 be a

non-negative function. Suppose that δ :=
[
f(c) : c← C

]
> 0. Then also for

all real j ≥ 1,[
f(c) : c← C

]
≤ δ1−j

[
f(c)j : c← C

]
= δ1−j

[
f(c) : c← C

]j
j

Proof. By weighted power means,[
f(c) : c← C

]j ≤ [f(c)j : c← C
]

By assumption, also[
f(c) : c← C

]
· δj−1 =

[
f(c) : c← C

]j
Combining these gives the claimed lemma.

In the above lemmas, we set Q to the subset that the adversary queries,

j := k/g and

f(c) := Pr (an event in F occurs when querying c) ≤
∑
f∈F

Pr (f : c)

We also have work = q/ g
√

Pr (c ∈ Q : c← C) and δ =
[
f(c) : c← C, c ∈ Q

]
,
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so that

qδ/work = g
√

Pr (c ∈ Q : c← C)
[
f(c) : c← C, c ∈ Q

]
lem. 2
≤ δ1−j g

√
Pr (c ∈ Q : c← C)

[
f(c)j : c← C, c ∈ Q

]
lem. 1
≤ δ1−j

[
f(c)j : c← C

]
g

= δ1−j
[
f(c) : c← C

]j
gj

= δ1−k/g
[
f(c) : c← C

]k/g
k

Rearranging,

δk/g ≤ work/q ·
[
f(c) : c← C

]k/g
k

δ ≤ workg/k/qg/k ·
[
f(c) : c← C

]
k

qδ ≤ workg/k · q1−g/k ·
[
f(c) : c← C

]
k

Setting f(c) ≤
∑

f∈F Pr (f : c) gives

qδ ≤ workg/k · q1−g/k ·

∑
f∈F

Pr (f : c) : c← C


k

≤ workg/k · q1−g/k ·
∑
f∈F

[
Pr (f : c) : c← C

]
k

= workg/k · q1−g/k · δk

by the Minkowski inequality. For k = g = 1 and work = q, this expression

simplifies to

δ ≤
∑
f∈F

[
Pr (f : c) : c← C

]
which is the union bound on the overall probability that any event in F

occurs. On the other hand, requiring δ ≥ 1/q gives

qg/k−1 ≤ workg/k · δk

so that

q ≥ workg/(g−k) · δk/(g−k)k

=
(

workg · δkk
)−1/(k−g)

This completes the proof of Theorem 1.
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C Pebbling algorithm

Theorem 2 (Pebbling algorithm). Suppose that for a b×b matrix B, Bi,j 6=
0 only when

0 ≤ i− j mod b ≤ `

for some small lag `. Suppose the distribution χ can take n different val-

ues in each coordinate. In this case, there is an algorithm which computes

η(B, k, χ) numerically in time O(b · n3`).

Proof. We separate the x variables into four sets:

• Outer variables: x0 thorough x`−1 are treated as an outer loop: all

possibilities are exhaustively considered.

• Frontier variables: xa−` through xa−1 are factored out of the inner

expression e~x
>M~y. This set may overlap with the outer variables. At

the beginning, it is the same as the outer variables.

• Factored variables: x` through xa−`−1 have been factored out of the

expression. This set starts empty.

• Inner variables: The rest of the variables, xa through xb−1, remain in

the inner set.

Let ~ya...b−1 be a vector which is 0 for the first a positions, and equal to y

in the remaining b − a positions. The pebbling algorithm manipulates the

equation

η(B, k, χ) =


cOF ·

[e~x>M~ya...b−1 : ~y
]k

: xa . . . xb−1︸ ︷︷ ︸
inner

 : xa−` . . . xa−1︸ ︷︷ ︸
frontier

 : x0 . . . x`−1︸ ︷︷ ︸
outer


Here cOF depends on the parameters of η, and on all the x’s in the outer

two expectations; its two indices OF remind that it depends in particular

on the values of the Outer and Frontier variables. The Factored variables

are not present in the expectation: they are captured in the cOF coefficients.
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Consider what happens when we increment a, looking only at the frontier

and inner expectations:[
cOF ·

[[
e~x
>M~ya...b−1 : ~y

]k
: xa . . . xb−1

]
: xa−` . . . xa−1

]

=

[
cOF ·

[[
e~x
>M~ya...b−1 : ~y

]k
: xa+1 . . . xb−1

]
: xa−` . . . xa

]
Now

e~x
>M~ya...b−1 = e~x

>M~ya+1...b−1 · e~x>Maya

Furthermore, in terms of y’s components these are independent of each other,

so that[
e~x
>M~ya...b−1 : ~ya...b−1

]k
=
[
e~x
>M~ya+1...b−1 : ~ya+1...b−1

]k
·
[
e~x
>Maya : ya

]k
By definition of `, all the variables xi that appear in e~x

>Maya are in the

set {xa−` . . . xa}, so they are determined by the frontier variables plus xa.

Therefore
[
e~x
>Maya : ya

]
is easily computed based on the distribution χ.

Except in this expression, the outermost frontier variable xa−` no longer

appears with nonzero coefficient in ~x>M~ya+1...b−1 (unless it’s an outer vari-

able), so it moves to the factored set. This gives us the update expression

cO (xa−`+1...xa) = Pr (xa ← χ) ·
∑
xa−`

cO (xa−`...xa−1) ·
[
e~x
>Maya : ya

]k
where the expectation is well-defined and easily computed because it de-

pends only on xa−` through xa. The state of the algorithm is therefore the

current position a, and the matrix of coefficients cOF . Since the update

matrix depends only on the column Ma of M , and those columns tend to

repeat, when implementing this we also keep a cache of recently used update

matrices.

After b steps of this update procedure, the frontier has reached the end of the

block, wrapped around and returned to be equal to the outer variables, so all

variables are either outer or factored and the inner expression is e~x
>M~0 = 1.

At that point,

η(B, k, χ) =
∑
O

cOO
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is just the trace of the state matrix. The final answer η(M,k, χ) can be

found as a product of
∏
B η(B, k, χ) where B ranges over the blocks in the

matrix.

D Proof of the Gaussian heuristic

Theorem 3 (Gaussian heuristic). If χ is the Gaussian distribution with

mean 0 and variance v, and if the matrix I − kv2M>M is positive-definite,

then

η(M,k, χ) =
1√

det(I − kv2M>M)

Proof. Consider a singular-value decomposition M = S∗ΛT , where S, T are

unitary. Then the distributions ~x>M~y = ~x>S∗ΛT and ~x>Λ~y have the same

distribution, because multi-variate i.i.d. Gaussians are spherically symmet-

ric. This means that when χ is Gaussian with variance v:

η(M,k, χ) =
∏
λ

1√
2πv

∫ ∞
−∞

(
1√
2πv

∫ ∞
−∞

eλxiyi−
x2

2v dx

)k
· e

y2

2v dy

where λ iterates over the singular values of M . We calculate that for all real

α,
1√
2πv

∫ ∞
−∞

eαx−
x2

2v dx =
1√
2πv

∫ ∞
−∞

e
(x−vα)2

2v
− vα

2

2 dx = e−
vα2

2

so that

1√
2πv

∫ ∞
−∞

(
1√
2πv

∫ ∞
−∞

eλxiyi−
x2

2v dx

)k
· e

y2

2v dy =
1√
2πv

∫ ∞
−∞

e
k(v2λyi)

2

2v
− y

2

2v dy

=
1√

1− kv2λ2

if the radicand is positive, and divergent if the radicand is negative. Now as

long as I − kv2M>M is positive-definite, all radicands are positive and

η(M,k, χ) =
∏
λ

1√
1− kv2λ2

=
1√

det(I − kv2M>M)
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as claimed.

To implement this numerically, we used Cholesky decomposition to deter-

mine both positive-definiteness and the determinant.
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