
Security proof of ThreeBears

Mike Hamburg

March 18, 2019

Abstract

This document provides a formal security proof for ThreeBears in

the Quantum Random Oracle model (QROM), under the assumption

that the Integer Module Learning With Errors (I-MLWE) problem is

hard. It considers KEM indistinguishability in the presence of multiple

victim keys, multiple challenge ciphertexts per key, against chosen-

ciphertext attacks.

Our proof shows explicitly why the unusual features of Three-

Bears’ hashing modes do not significantly change the security of the

construction. These features include a short matrix seed, explicit re-

jection, and no plaintext-confirmation hash. Furthermore, our proof

highlights why some of ThreeBears’ features were chosen. We specif-

ically address why the hashing the matrix seed is important for multi-

target security, but hashing the whole public key isn’t required. We

also explain why the IND-CPA mode hashes the seed twice but the

IND-CCA mode only hashes it once.

1 Introduction and Related Work

Many of the post-quantum key exchange candidates are based on the on

Lyubashevsky-Peikert-Regev [LPR10] RLWE construction. Their security

depends primarily on that of RLWE with a certain ring and certain noise

parameters. To protect against chosen-ciphertext attacks, they also employ

some variant of the Fujisaki-Okamoto transform [FO99]. There are many

1

possible variants of this transform, depending primarily on:

• Explicit or implicit rejection: does a failed decryption result in a spe-

cial “failure” return value (usually written ⊥), or a pseudorandom

value?

• Plaintext confirmation: does the ciphertext include a hash of the plain-

text?

• Ciphertext hashing: are the message and ciphertext hashed to produce

the shared secret, or only the message?

• Domain separation: is the public key included, in whole or in part,

when hashing the message?

Each of these options comes with its own trade-offs in performance, security

against known attacks, and provable security.

Most proofs of CCA security for practical KEMs use the random oracle

model, or in our case the quantum random oracle model (QROM) [BDF+11].

The earlier studies on QROM KEM security, [TU16] and [HHK17], have

large gaps in provable security. The IND-CCA advantage is on the order of
4
√
q6ε where ε is the IND-CPA advantage against the underlying randomized

encryption scheme, and q is the number of quantum random-oracle queries

the adversary can make.

More recent studies have reduced the degree of security loss to a square root,

and the factor to q2 or even q, but they come with limitations that prevent

them from applying to ThreeBears. Most commonly, existing proofs re-

quire either implicit rejection or plaintext confirmation. In particular:

• [SXY18] requires implicit rejection and perfect correctness.

• [JZC+17] requires implicit rejection or plaintext confirmation.

• [XY18] requires implicit rejection.

• [JZM19a] requires plaintext confirmation.

• [JZM19b] requires either implicit rejection or stronger properties from

2

the underlying encryption scheme, which are usually achieved by plain-

text confirmation.

In this paper, we give a proof of IND-CPA and IND-CCA security for

ThreeBears, even though ThreeBears uses neither implicit rejection

nor plaintext confirmation. While we would like to prove this result for

Fujisaki-Okamoto transforms of general public-key encryption schemes, our

IND-CCA proof hinges on a particular property of ThreeBears, which

may not be shared by systems that use rounding. Specifically, the less-

significant bits of each digit in ThreeBears serve the same purpose as a

plaintext-confirmation hash.

2 Preliminaries

2.1 Quantum and semi-classical oracles

We will use the one-way-to-hiding (O2H), quantum search and semi-classical

oracle results from [AHU18].

Semi-classical oracles A semi-classical oracle OSCS for membership in a

set S is an oracle which takes a quantum input, and classically measures

whether it is in some set S. More formally, OSCS (x) quantumly computes

whether x ∈ S, storing the result in a zero-initialized auxilliary bit y, and

then measures y. Let Find be the event that any such measurement during

the computation returns 1. Here S could be given explicitly, or by an efficient

quantum algorithm that recognizes it.

Punctured oracles For a quantum-accessible oracle H and a set S, the

oracle H\S (“H punctured by S”) takes as input a value x, then runs

OSCS (x), and finally runs H(x) and returns the result. Informally, if the

input is in S then the punctured oracle will Find, and otherwise it will

return a result independent of H’s outputs on S (except insofar as those

3

outputs are related to other outputs of H). The following lemma formalizes

this:

Lemma 1 (Puncturing is effective; [AHU18] Lemma 1). Let S ⊆ X be

random. Let G,H : X → Y be random functions satisfying ∀x /∈ S. G(x) =

H(x). Let z be a random bitstring. (S,G,H, z may have arbitrary joint

distribution.)

Let A be a quantum oracle algorithm (not necessarily unitary).

Let E be an arbitrary (classical) event.

Then Pr[E ∧ ¬Find : x← AH\S(z)] = Pr[E ∧ ¬Find : x← AG\S(z)].

Of course, if we measured the entire input to H then the same theorem

would apply, but that would completely ruin the algorithm A whether or

not it queries H(x) for x ∈ S. But puncturing only disturbs the adversary’s

state when it is likely to Find:

Lemma 2 (Semi-classical O2H; [AHU18] Theorem 1, case (4)). Let S ⊆
X be random. Let G,H : X → Y be random functions satisfying ∀x /∈
S. G(x) = H(x). Let z be a random bitstring. (S,G,H, z may have arbitrary

joint distribution.)

Let A be an oracle algorithm of query depth d (not necessarily unitary).

Let

Pleft := Pr[b = 1 : b← AH(z)]

Pright := Pr[b = 1 ∧ ¬Find : b← AH\S(z)]

Pfind := Pr[Find : AG\S(z)]
Lem. 1

= Pr[Find : AH\S(z)]

Then

|Pleft − Pright| ≤ 2
√

(d+ 1) · Pfind

We might expect that if the adversary has no information about S, then

Pfind would be at most q |S| / |X|. But measuring whether the query is in S

disturbs the adversary’s state in a way that depends on S, which also gives

4

information. However, the effect is limited to a factor of 4, as the following

lemma shows.

Lemma 3 (Search in semi-classical oracle; [AHU18] Theorem 2). Let A be

any quantum oracle algorithm making at most q queries to a semi-classical

oracle with domain X. Let S ⊆ X and z ∈ {0, 1}∗. (S, z may have arbitrary

joint distribution.)

Let B be an algorithm that on input z chooses i
R← {1, . . . , d}; runs AO

SC
∅ (z)

until (just before) the i-th query; then measures all query input registers in

the computational basis and outputs the set T of measurement outcomes.

Then

Pr[Find : AO
SC
S (z)] ≤ 4d · Pr[S ∩ T 6= ∅ : T ← B(z)] (1)

In some cases, we will only need traditional, fully-quantum O2H. This can be

factored into the previous two lemmas, but using a single lemma is cleaner

and gives a slightly tighter bound:

Lemma 4 (One-way to hiding; [AHU18] Theorem 3). Let S ⊆ X be random.

Let G,H : X → Y be random functions satisfying ∀x /∈ S.G(x) = H(x). Let

z be a random bitstring. (S,G,H, z may have arbitrary joint distribution.)

Let A be quantum oracle algorithm with query depth d (not necessarily uni-

tary).

Let BH be an oracle algorithm that on input z does the following: pick i
R←

{1, . . . , d}, run AH(z) until (just before) the i-th query, measure all query

input registers in the computational basis, output the set T of measurement

outcomes.

Let

Pleft := Pr[b = 1 : b← AH(z)]

Pright := Pr[b = 1 : b← AG(z)]

Pguess := Pr[S ∩ T 6= ∅ : T ← BH(z)]

Then

|Pleft − Pright| ≤ 2d
√
Pguess and

∣∣∣√Pleft −
√
Pright

∣∣∣ ≤ 2d
√
Pguess

5

The same result holds with BG instead of BH in the definition of Pguess.

We will use three corollaries to this theorem. The first shows that un-

structured search algorithms (such as Grover’s algorithm) have performance

bounded by their query depth.

Corollary 1 (Unstructured quantum search; tightening of [AHU18] Lemma

2). Let H be a random function from X → {0, 1}, drawn from a distribution

such that Pr[H(x) = 1] ≤ λ for all x. Let A be a q-query adversary with

query depth d. Then Pr[H(x) = 1 : b← AH()] ≤ 4(d+ 1)(q + 1)λ.

Proof. Let BH be the algorithm which runs x ← AH() and then measures

H(x). It makes q + 1 queries at depth d+ 1. Applying Lemma 4 to BH vs

B0, where in the latter case the oracle always returns 0, gives∣∣∣√Pleft −
√
Pright

∣∣∣ ≤ 2(d+ 1)
√
Pguess

where Pright = 0 and Pguess ≤ λ(q + 1)/(d + 1). Substituting and squaring

both sides gives the claimed result.

A second corollary is that a random oracle is suitable as a pseudorandom

generator. That is, hashing short random values is as secure as choosing

longer random values, so long as the short ones aren’t short enough to fall

to a Grover attack.

Corollary 2 (Replacing random oracle results with random values). Let H

be a random oracle from X → Y , which for each x ∈ X returns a uniformly,

independently random value y from some distribution DY on Y . Let x be a

random variable, drawn from a distribution DX such that Pr[x = x0] ≤ λ

for all x0 ∈ X. Let k be an integer greater than the size of the support of

DX . Let x1, . . . , xk
u← D denote indicate drawing k samples from D, and

rejecting until all of them are unique. Let A be a q-query algorithm with

query depth d.

Pleft := Pr[b = 1 : x1, . . . , xk
u← DX ; b← AH(H(x1), . . . ,H(xk))]

Pright := Pr[b = 1 : y1, . . . , yk ← DY ; b← AH(y1, . . . , yk)]

6

Then

|Pleft − Pright| ≤ 2
√
qdkλ

Proof. The right case is exactly equivalent to changing the return value of

H to a different uniform random value on the set {x1, . . . , xk}. Each x is in

this set with probability at most kλ. Then the result follows directly from

Lemma 4.

As a third corollary, we show that when replacing a 2-input oracle H(x, y),

it is good enough if the distribution matches for most x.

Corollary 3 (Curried oracles). Let G resp. H be random oracles from X ×
Y → Z, where X and Y are finite, such that for each x, the function G(x·)
resp. H(x, ·) are independent random samples from some distribution D

resp. E of functions from Y → Z. Suppose that the total variation distance

between D and E is at most λ. Then for all algorithms A that make q

queries at depth d and return a bit b,∣∣Pr[b = 1 : b← AH()]− Pr[b = 1 : b← AG()]
∣∣ ≤ 2

√
qdλ

Proof. This is an information-theoretic argument, so we don’t need to be

efficient. Factor D and E as

D =

{
D0 with probability 1− λ
D1 with probability λ

, E =

{
D0 with probability 1− λ
E1 with probability λ

Let G′ resp. H ′ be jointly distributed oracles from X → (Y → Z), which

(independently for each input x ∈ X) return the same random element sam-

pled according to D0 with probability 1−λ, and possibly-different elements

sampled according to D1 resp. E1 with probability λ. Define the uncurrying

function uncF (x, y) = F (x)(y). Then AuncG
′

resp. AuncH
′

behave identically

to AG resp. AH . Furthermore for each x, Pr[G′(x) 6= H ′(x)] ≤ λ. The result

then follows from Lemma 4.

7

2.2 Indifferentiable hashing

Two random oracles G and H are said to be δ-indifferentiable [MRH04] if

there are efficient algorithms ĜH and ĤG, which efficiently approximate G

and H respectively with access to the other, such that an adversary cannot

tell the difference between (ĜH , H) and (G, ĤG) with probability greater

than δ. In the random oracle model, a system which is secure with oracle

H is necessarily secure (with additive loss at most δ) when instantiated

with ĤG and vice-versa. Note that a tuple of oracles (H1, H2, . . .) may be

treated the same as a single random oracle H with a larger input, where

H1(x) = H(1, x) etc.

3 Security model

This section covers the security model of a public-key encryption system

(KeyGen, Enc, Dec) or a key-encapsulation mechanism (KeyGenKEM, En-

caps, Decaps). The KeyGen and Enc/Encaps algorithms are randomized,

which we represent through them taking an extra “coins” argument from a

space CKeygen etc. The Enc and Dec algorithms encrypt or decrypt a message

m ∈M, and the KEM algorithms share a shared secret key ss ∈ Xss.

We aim to model an adversary who has access to a large number k of public

keys and c challenge ciphertexts per key. We could give the adversary these

keys and ciphertexts up front, but if k and c are both large (say 264), then kc

could be truly enormous. So instead we give the adversary one oracle to gen-

erate public keys and another to generate challenge ciphertexts for a given

key. We limit the adversary to c ciphertexts per key and ctot total.

The IND-CPA (Indistiguishability under Chosen-Plaintext Attack) game

for encryption is shown in Algorithm 1. In the QROM, all algorithms are

relative to the random oracle(s), and the adversary has quantum access to

those oracles. We use indistinguishability, rather than one-way-ness (OW-

passive), for two reasons. First, it fits better with LWE. Decision-LWE gives

IND-CPA security, but the harder problem (search-LWE) doesn’t give the

8

weaker security notion (OW-passive). Second, CCA reductions based on

IND-CPA seem tighter than those based on OW-passive.

We could reduce to a weaker IND-KPA (Known-Plaintext Attack) model,

but the message is just added to the masking elements anyway, so this

wouldn’t gain anything. We use IND-CPA instead because it simplifies

choosing messages from random oracles. We could also define an IND-CCA

(Chosen-Ciphertext Attack) game for encryption, but we don’t need it for

this paper since we only want to prove IND-CCA for KEMs.

Algorithm 1: CPA security game for public-key encryption

Game IND-CPA(A) is

bchal
R← {0, 1};

k ← 0;

Classical oracle ChalKeygen() is

k ← k + 1;

coins← CKeygen;

(pkk, skk)← Keygen(coins);

return pkk;

end

Classical oracle ChalEnc(i,m1) is

if i > k then return ⊥;

m0
R←M;

coins
R← CEnc;

return Enc(pki,mbchal , coins);

end

bguess ← AChalKeygen,ChalEnc();

A wins if and only if bguess = bchal.

end

For KEMs, our IND-CCA (Indistiguishability under Chosen-Ciphertext At-

tack) game is shown in Algorithm 2. This is like the IND-CPA game for

encryption, except that the adversary doesn’t have access to the plaintext.

9

Instead, it learns a candidate shared secret, which in the case of Three-

Bears is the hash of the plaintext. Furthermore, since are modeling a

chosen-ciphertext attack, the adversary gets access to a decryption oracle

ChalDec. That oracle isn’t allowed to decrypt challenge capsules, but in-

stead returns the failure symbol ⊥. The IND-CPA security game for KEMs

is the same, except that the adversary doesn’t have access to ChalDec.

Algorithm 2: IND-CCA security game for KEMs.

Game IND-CCA(A) is

bchal
R← {0, 1};

k ← 0;

C ← ∅;
Classical oracle ChalKeygen() is

k ← k + 1;

(pkk, skk)← KeygenKEM();

return pkk;

end

Classical oracle ChalEnc(i) is

if i > k then return ⊥;

(ct, ss1)← Encaps(pki);

ss0
R← Xss;

C ← C ∪ {(i, ct)};
return (ct, ssb);

end

Classical oracle ChalDec(i, ct) is

if i > k or (i, ct) ∈ C then return ⊥;

return Decaps(ski, ct);

end

bguess ← AChalKeygen,ChalEnc,ChalDec();

A wins if and only if bguess = bchal.

end

For an IND-CPA adversary A, define its (encryption or KEM) IND-CPA

10

advantage as

AdvIND−CPA(A) := |2 · Pr[A wins the IND-CPA game]− 1|

= |Pr[1← A : bchal = 1]− Pr[1← A : bchal = 0]|

and likewise for CCA-advantage.

4 Simplifications

In this section, we show that changing two features of ThreeBears, its key

generation from the seed, and its shorter-than-usual matrix seed, doesn’t

have any serious security consequences. This will simplify the rest of the

security proof.

4.1 Key generation without the seed

We first change ThreeBears to a variant, ThreeBears0, which chooses

the coins for private key generation uniformly at random instead of expand-

ing from a 320-bit seed.

By Corollary 2, if the adversary A makes q random oracle queries at depth

d, then∣∣∣∣∣ AdvIND−CCA(A : ThreeBears0)

−AdvIND−CCA(A : ThreeBears)

∣∣∣∣∣ ≤ 4
√
qdk/2320 + k2/2320

and the same for IND-CPA. With k ≤ 264, this is almost identical to the

bound for a Grover attack on a 256-bit secret.

4.2 No collisions in the matrix seed

ThreeBears public keys include a 192-bit matrix seed, and the collision

probability of such seeds over a 264-key attack is less than
(
k
2

)
/s < 2−65,

where s = 2192 is the seed space. This is a tiny probability, but perhaps

11

not negligible. In this paper we will play a modified game where the matrix

seeds are chosen to be distinct.

Formally, let Unique be the event that all keys generated during the game

have distinct matrixSeed. We define the IND-CPA-U advantage of an ad-

versary A as the conditional advantage:

AdvIND−CPA−U(A) := |2 · Pr[A wins the IND-CPA game : Unique]− 1|

=

∣∣∣∣∣ Pr[1← A : bchal = 1,Unique]

−Pr[1← A : bchal = 0,Unique]

∣∣∣∣∣
In ThreeBears0 the seed is uniformly random, and not even generated by

an oracle, so this is equivalent to the advantage in an “IND-CPA-U game”

where the challenger samples the matrixSeed uniformly from all 192-bit

strings that haven’t been sampled yet. Define IND-CCA-U analogously.

Note that the adversary has the same description in both cases. It’s only

the challenger’s behavior that differs.

The unique-key game cannot increase the adversary’s advantage by much,

as the following lemma shows:

Lemma 5. If A is an IND-CPA resp. IND-CCA adversary against ThreeBears0

with advantage ε, and suppose that it requests at most k public keys. Then

there is an IND-CPA resp. IND-CCA adversary B against ThreeBears0,

running in about the same time as A, that has IND-CPA-U resp. IND-CCA-

U advantage

εu ≥ max

(
ε−

(
k

2

)
/s, ε/2−

(
k

3

)
/s2, ε/3−

(
k

4

)
/s3, . . .

)
so that

ε ≤ min

(
εu +

k2

2s1
, 2εu +

k3

3s2
, 3εu +

k4

4s3
, . . .

)
Proof. Deferred to Appendix C.

In particular, with k ≤ 264 and s = 2192, we will have

ε ≤ min
(
εu + 2−65, 2εu + 2−193

)
so that the shorter seed costs at most about 1-2 bits of security.

12

4.3 As a simple PKE algorithm

We further define ThreeBearsr the public-key encryption algorithm un-

derlying ThreeBears0, which encrypts a message m with random coins,

and doesn’t hash m to produce a shared secret. The system ThreeBearsr

doesn’t call the random oracle except to expand the matrix seed.

5 IND-CPA-U security proof

So far we have reduced the IND-CPA security of ThreeBears to IND-

CPA-U security of ThreeBears0. We next show that the underlying PKE

algorithm ThreeBearsr is IND-CPA-U secure. We start with a definition

of the MLWE problem.

Definition (MLWE). Let R be a finite ring. Let χ be a probability distribu-

tion over R. Let d1 and d2 be positive integers. The (R,χ, d1 × d2)-MLWE

problem is to distinguish the MLWE distribution

D1 := {(M,Ma+ e) : M
R← Rd1×d2 , a← χd1 , e← χd2}

from the uniform distribution

D0 := {(M, r) : M
R← Rd1×d2 , r

R← Rd2}

A (possibly randomized) algorithm A : R(d1+1)×d2 → {0, 1} has MLWE ad-

vantage:

AdvMLWE(A) := |Pr[A(X)→ 1 : X ← D1]− Pr[A(X)→ 1 : X ← D0]|

The I-MLWE problem is just the MLWE problem with R = Z/N for N ≈
xD, and χ as a distribution which samples elements e ∈ R with small digits

in radix x. In the case of ThreeBears, χ is the noise function. Note that

the definition is the same with or without an (invertible) clarifier, because if

M is uniformly distributed in Rd1×d2 then so is clar·M , and vice-versa.

The next lemma shows that if the (d+1)×d I-MLWE problem is hard (with

χ = noise), then ThreeBearsr is IND-CPA-U secure.

13

Lemma 6. Let A be an IND-CPA adversary against ThreeBearsr, which

instantiates k public keys and at most c challenge ciphertexts per key. Then

AdvIND−CPA−U(A : ThreeBearsr)

≤ 2k(c+ 1) · (Adv((d+1)×d)−I−MLWE(B) + 2−1555)

Proof. A standard hybrid argument, deferred to Appendix B.

Why bother addressing multi-target attacks if the proof loses a factor of

2k(c + 1)? The answer is twofold. First, while we expect that the attacker

will gain some advantage from multi-target attacks, we don’t expect a full

factor of 2k(c+ 1). So the rest of the paper can model the impact of multi-

target attacks on the Fujisaki-Okamoto transform. We could invent an “I-

MLWE(d×(d+1); k×c)” problem for the reduction, but the definition would

be almost the same as the security of ThreeBearsr anyway. Second, for

IND-CCA security, the IND-CPA advantage will end up inside a square root.

Addressing multi-target attacks explicitly puts the kc + k factor inside the

square root instead of outside.

5.1 As a KEM

Theorem 1. Let A be an IND-CPA adversary against ThreeBears0. Sup-

pose A queries the random oracles at most q times with query depth at most

d, and uses at most k public keys, c challenge ciphertexts per key, and ctot

challenge ciphertexts total. Then there exists an IND-CPA adversary against

ThreeBearsr with the same (k, c, ctot) such that

AdvIND−CPA−U(A : ThreeBears0) ≤ 2AdvIND−CPA−U(A : ThreeBearsr)

+ c · ctot/ |M |+ 6
√
dqc/ |M |

Proof. We prove security by a series of games. During those games, we will

say that if certain classical events occur, the game is a draw, which is a third

outcome distinct from the adversary winning or losing. Let

wi := Pr [A wins game i] +
1

2
Pr [A draws game i]

14

Game 0 (IND-CPA). This is the IND-CCA-U game against ThreeBears0.

Game 1 (Seeds can’t collide). Game 1 is the same as Game 0, except that

if two challenge seeds collide, then the game is a draw.

We have |w1 − w0| ≤ c · ctot/(4 |M |)

Game 2 (Random m and coins). Game 2 is like Game 1, except that the

messages and encryption coins are chosen at random instead of being ex-

panded from the seed.

By Corollary 2, |w2 − w1| ≤ 2
√
dqc/ |M |

Game 3 (Encryptions of random messages). Game 3 is like Game 2, except

that each ciphertext encrypts a random message instead of the challenge

message.

We have |w3 − w2| ≤ AdvIND−CPA−U(A : ThreeBearsr).

Game 4 (Messages can’t collide). Game 4 is the same as Game 3, except

that if two challenge messages collide, then the game is a draw.

We have

|w4 − w3| ≤ c · ctot/(4 |M |)

But now if b = 1 the shared secrets are hashes of random distinct messages

used nowhere else, and if b = 0 they are uniformly random values. By

Corollary 2, we have ∣∣∣∣w4 −
1

2

∣∣∣∣ ≤√dqc/ |M |
Summing up and doubling these differences give the claimed advantage.

Recall that ThreeBears’ IND-CPA mode differs from its IND-CCA mode

partly in that for IND-CPA, the coins and message are the hash of a seed,

but for IND-CCA the message is the seed. The reason for this split is seen

in the above proof. If the coins were the hash of the message, we would have

a circular-security problem, and we would need a looser and more complex

15

reduction involving semiclassical oracles. We could not avoid this problem

for IND-CCA, because everything must be derived from the message so that

the recipient can check the encryption.

6 IND-CCA security proof

This section shows a reduction from k-key IND-CCA-U security of ThreeBears0

to IND-CPA-U security of ThreeBearsr, where cSHAKE is modeled as a

quantum-accessible random oracle. In the simulation we will additionally

assume a quantum-accessible ideal cipher, but only for simplicity. The same

effect can be achieved with a standard-model cipher or at the cost of de-

creased performance with many challenge ciphertexts.

We begin with some notation.

6.1 High and low bits

Let N = 23120 − 21560 − 1 be the ThreeBears modulus. For a number

y ∈ Z/N , let high4(y) be the concatenation of the most-significant 4 bits

of each 10-bit digit of y, and let low6(y) the concatenation of the least-

significant 6-bits of each 10-bit digit of y. Extend this notation to vectors

of length d by concatenation, meaning that

high4((y0, y1, . . . , yd−1)) := high4(y0) || high4(y1) || . . . || high4(yd−1)

and likewise for low6.

For brevity, for a public key pk, let

Hb(pk,m) := Jnoise2(matrixSeed||m||iv, i)Kd−1
i=0

Let He(pkm) be the same, except with i = d to 2d− 1. Note that iv is the

empty string for all recommended instances of ThreeBears.

16

6.2 High-bit-injective keys

Fix Hb. For a public key pk, let M be the d × d matrix derived by ex-

panding its seed. For a plaintext m, let ~B be the ciphertext component

M ·Hb(pk,m) +He(pk,m). Call pk “high-bit-injective” if, for all plaintexts

(m0, iv1) 6= (m1, iv2) producing secrets ~b0 resp ~b1, and for all possible noise

values (~e0, ~e1) (not just those that result from He(pk,m)), we have

high4(M ·Hb(pk,m0) + ~e0) 6= high4(M ·Hb(pk,m1) + ~e1)

High-injectivity is a property of the matrixM andHb(pk, ·), but notHe(pk, ·).
Lemma 7. Denote by εhi the probability that a ThreeBears0 public key

fails to be high-bit-injective. Then for recommended ThreeBears instances,

εhi ≤ 2−409.

Proof. Deferred to Appendix A.

Most CCA security proofs use a plaintext-confirmation tag. The actual

security benefit of this tag is questionable, but in the proof it is used with

a backdoored oracle to leak the plaintext to the simulator. We show that

the same can be accomplished using the low bits of the message, which are

influenced almost directly by He.

Lemma 8. For a certain uniformly random oracle family F , there is a pair

of efficient hash functions Ge(pk,m), Gt(pk,m) such that if pk is high-bit-

injective, then:

• (F,Hb, He) is 0-indifferentiable from (F,Hb, Ge, Gt).

• Gt is a uniformly random oracle which returns a 256-bit value.

• Gt(pk,m) can be calculated from only the ciphertext component B =

Mb + e, except with probability at most εt < 2−319 independently per

message.

Proof. Deferred to Appendix D

17

We note that a similar construction should work for other (Ring, Module

and Plain) LWE schemes, but not necessarily for LWR.

For the proof we will actually use the oracle

Gt(pk,m) := m⊕Gm(high4(M ·Hb(pk,m) + ~He(pk,m)))

where Gm is another random oracle. If pk is high-bit-injective, then this

oracle is also uniformly random (but not indifferentiable from Gt).

6.3 Main theorem

We are now ready for the main IND-CCA security theorem.

Theorem 2. Let A be an IND-CCA adversary against ThreeBears0. Sup-

pose A makes at most q queries to the challenge oracles and cSHAKE (mod-

eled as a quantum-accessible random oracle) at depth d; uses at most k keys,

c challenge ciphertexts per key and ctot challenge ciphertexts total; and asks

at most qdec decryption queries. Let δmax be the expected maximum failure

probability encountered in k keys. Then there is an adversary B using only

slightly more resources than A, such that

AdvIND−CCA−U(A : ThreeBears0)

≤ 2
√

(d+ 1) · (AdvIND−CPA−U(B : ThreeBearsr) + 8cq/ |M|)

+ 8dq(δmax + εt)

+
c · ctot

|M|
+

2c · qdec

|M| − c
+ 4
√
dqεhi + kεhi

The main differences in runtime between B and A are that B includes most

of the IND-CCA challenger; and that B replaces calls to He with a sampling

algorithm, which requires solving a 256×256 system of linear equations over

F2.

For a typical quantum attack we should have q � ctot, q � qdec, q > d �
1, |M| � c and (εhi, εt) negligible, so that

AdvIND−CCA−U(A : ThreeBears0)

/ 2
√
d ·AdvIND−CPA−U(B : ThreeBearsr) + 4

√
2dqc/ |M|+ 4

√
dqδmax

18

In turn AdvIND−CCA(A : ThreeBears) should be at most about twice this

much.

6.4 Proof of Theorem 2

We now prove security by a series of games. During those games, we will

say that if certain classical events occur, the game is a draw, which is a third

outcome distinct from the adversary winning or losing. Let

wi := Pr [A wins game i] +
1

2
Pr [A draws game i]

Note that this definition makes sense even if draws aren’t efficiently de-

tectable.

Game 0 (IND-CCA-U). This is the IND-CCA-U security game against

ThreeBears0.

Game 1 (High-bit-injective public keys). This is the same as Game 0,

except that the game is a draw if not all challenge keys are high-bit-injective.

We have |w1 − w0| ≤ kεhi/2.

Game 2 (Messages can’t collide). This is the same as Game 1, except that

the challenge plaintexts are chosen always to be unique. For clarity, the ith

challenge plaintext to a public key pk is πmatrixSeed(pk)(i), where π is an ideal

cipher known only to the simulator.

This is necessary, because the adversary wins with high probability whenever

challenge plaintexts collide, simply by testing whether the shared secrets

collide. We have |w2 − w1| ≤ 1
2c · ctot/ |M|.

Game 3 (No prescient queries). This is the same as Game 2, except that

the decapsulation oracle returns the failure code ⊥ whenever the decapsu-

lated plaintext m is a possible challenge message for pk, i.e. when 0 ≤
π−1
matrixSeed(pk)(i) < c. It performs this check before the re-encryption check.

This enables the simulator to answer decryption queries consistently. Note

that it already answers ⊥ if m has actually been used in a challenge ci-

phertext, since either the ciphertext is that challenge, or it is invalid. Since

19

the adversary has no information about the set of possible future challenges

except that they are different from existing ones,

|w3 − w2| ≤ qdec · c/(|M| − c)

Game 4 (Use modified oracle). This is the same as Game 3, except that

(F,Hb, He) are simulated using (F,Hb, Ge, Gm).

For each public key pk, if pk is high-bit-injective, then (F,Hb, He) are 0-

indifferentiable from their simulations using (F,Hb, Ge, Gt), and further-

more that set of oracles has the same distribution as its simulation using

(F,Hb, Ge, Gm) as above. Therefore by Corollary 3

|w4 − w3| ≤ 2
√
dqεhi

Game 5 (Replace decapsulation oracle). This is the same as Game 4, except

that instead of recovering m using Dec(sk, ct), it is recovered as

Extract(pk, ct) := m⊕ (F ⊕Gm)(high4(ct))

These two games will diverge if and only if the m recovered for some ci-

phertext is different from that recovered by Dec, and at least one of them

encrypts to ct, and ct is not a challenge ciphertext. This can happen in one

of two ways: either the adversary submits a ciphertext such that decryption

fails, or one such that

Gt(pk,m) 6= (F ⊕Gm)(high4(M ·Hb(pk,m)))

For any challenge public key and any message, the former happens with

probability at most δmax, and the latter happens with probability εt.

Let B be an algorithm which runs A in the simulator, but if at any point

A submits a decapsulation query Decaps(pk, ct) such that Dec(sk, ct) 6=
Extract(pk, ct), and at least one of these m satisfies Encaps(pk,m) = ct,

then it exits and returns m. That is, B is an algorithm which performs an

unstructured search for decryption failures. Applying Corollary 1 to B, we

20

have:1

|w5 − w4| ≤ Pr[B finds a decryption failure m]

≤ 4dq(δmax + εt)

As of Game 5, the simulator doesn’t need the private key.

Game 6 (Puncture at challenge messages). Game 6 is the same as Game 5,

but the simulator punctures all the adversary’s queries to hash functions

at (pk,m) for m ∈ Mpk. If Find occurs, then the game is a draw. The

simulator still calls those hash functions itself to generate challenge messages

and shared secrets. This change is irrelevant to decryption queries due to

the “no prescient queries” rule.

By Lemma 2,

|w6 − w5| ≤
√

(d+ 1) · Pfind

where Pfind is the probability that A is measured to have queried such

(pk,m). We will evaluate Pfind over the next few games. Let Pfind,i be the

value of Pfind in Game i. By Lemma 1 the adversary’s view is independent

of the shared secrets unless the game is a draw.

Therefore w6 = 1
2 . Over the next few games, we will study Pfind.

Game 7 (Coins at random). Game 7 is the same as Game 6, but the simu-

lator chooses the coins for challenge messages and shared secrets at random.

At this point all the challenge plaintexts are all distinct for each key, and

the public keys are all high-bit-injective, or else the game is a draw. There-

fore the hash arguments used to generate challenge messages and shared

secrets are distinct, and the simulated hash ĤF,Hb,Gm
e is indeed uniformly

and independently random. Thus the challenge coins are independent of

each other, and of all other outputs of Hb and Ĥe; and the same is true for

1It should be noted that each oracle query Hb(pk,m) in A is simulated as

Ĥ
F,Hb,Gm
e (pk,m) using multiple oracle queries in B. Näıvely this should increase the d and

q used here to greater values such as 2d and 2q. But in fact, treating (F,Hb, Ĥ
F,Hb,Gm
e , Gm)

as jointly-distributed oracles shows that dq suffices. Also note that we use dq instead of

(d+ 1)(q+ 1), because the decapsulation query itself counts toward d and q in our setting,

but not in Corollary 1.

21

shared secrets. By Lemma 1, the adversary’s view is independent of these

punctured values unless Find, and if Find occurs the game is also a draw.

Therefore Pfind,7 = Pfind,6.

Game 8 (IND-CPA-U, b = 1). Game 8 is the same as Game 7, but the

simulator uses the IND-CPU-U oracle for ThreeBearsr with b = 1 to

create public keys and encrypt challenge messages.

As of Game 7, the simulator is taking the same steps as the IND-CPA-U

oracle, so Pfind,8 = Pfind,7.

Game 9 (IND-CPA-U, b = 0). Game 9 is the same as Game 8, but the

simulator uses the IND-CPA-U oracle with b = 0 to create public keys and

encrypt challenge messages.

By definition, the simulator B in Game 9 and Game 8 is an IND-CPA

adversary against ThreeBearsr, so that

|Pfind,9 − Pfind,8| = AdvIND−CPA−U(B : ThreeBearsr)

Furthermore, the values sent to the adversary are independent of the chosen

messages, so that by Lemma 3

Pfind,9 ≤ 4cq/ |M|

Combining the previous several games, we have

Pfind,6 ≤ AdvIND−CPA−U(B) + 8cq/ |M|

6.5 Summing up

Finally, we have shown that∣∣∣∣w0 −
1

2

∣∣∣∣ ≤ √
(d+ 1) · (AdvIND−CPA−U(B : ThreeBearsr) + 8cq/ |M|)

+ 4dq(δmax + εt)

+
c · ctot

2 |M|
+

c · qdec

|M| − c
+ 2
√
dqεhi +

1

2
kεhi

so the adversary’s IND-CCA-U advantage is at most twice this value, as

claimed.

22

•
√

(d+ 1) · (AdvIND−CPA−U(B : ThreeBearsr) is an IND-CPA attack,

amplified by d + 1 due to the removal of the circular dependency of

the coins on m. We conjecture that this term is loose, but we cannot

prove it.

•
√

(d+ 1) · (. . .+ 8cq/ |M|) corresponds to a Grover attack to recover

the ciphertext seed for some challenge message.

• 4dq(δmax + εt) corresponds to a Grover attack to find either a message

that fails to decrypt, or where our extractor fails.

• c·ctot
|M| is the probability that the adversary wins immediately due to

two challenge messages colliding.

• c·qdec
|M|−c does not correspond to a known attack, but prevents the simula-

tor from becoming inconsistent when faced with prescient decryption

queries.

• 2
√
dqεhi + 1

2kεhi does not correspond to a known attack, but to the

probability that public keys aren’t high-bit-injective.

6.6 One-way vs indistinguishability

The reader might notice that we have reduced to IND-CPA security of the

underlying PKE, and not OW-Passive security. But it only uses the chal-

lenge messages m to test if the adversary is querying them in the hash. This

is for a rather trivial reason: the underlying PKE is randomized. If we were

to reduce to OW-Passive, the simulator in Game 6 would not be able to

test whether a given H(pk,m) is querying a challenge message. Instead we

would need to abort on a random query and output m as a guess. The the-

orem would follow from Lemma 4, but with an additional looseness factor

of q.

To modularize Theorem 2 to other systems, we could use a notion of “OW-

qPCA1”, i.e. one-wayness where the adversary is given a quantum-accessible

oracle PCA(m) that checks whether m is a challenge message. For a deter-

23

ministic PKE, this is the same as OW-Passive security, and for a randomized

PKE it can instead be proved from IND-CPA as in this work.

7 Conclusions

We have shown that if the I-MLWE is hard, then ThreeBears is secure in

the quantum random oracle model. Our proof is not perfectly tight, as it

loses a square root and a factor of d in the IND-CCA reduction, but this is

comparable to most other post-quantum security proofs. Our CCA reduc-

tion considers attacks using k keys and ctot messages, though ultimately in

the I-MLWE reduction these produce a k + ctot factor.

8 Acknowledgements

This paper is based on joint work with Dominique Unruh and Andris Ambai-

nis. Thanks to Daniel Kane and Eike Kiltz for helpful discussions. Thanks

to Mark Marson for his feedback on a draft of this paper.

References

[AHU18] Andris Ambainis, Mike Hamburg, and Dominique Unruh. Quan-

tum security proofs using semi-classical oracles. Cryptology

ePrint Archive, Report 2018/904, 2018. https://eprint.iacr.

org/2018/904.

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann,

Christian Schaffner, and Mark Zhandry. Random oracles in

a quantum world. In Dong Hoon Lee and Xiaoyun Wang,

editors, ASIACRYPT 2011, volume 7073 of LNCS, pages

41–69. Springer, Heidelberg, December 2011. doi:10.1007/

978-3-642-25385-0_3.

24

https://eprint.iacr.org/2018/904
https://eprint.iacr.org/2018/904
http://dx.doi.org/10.1007/978-3-642-25385-0_3
http://dx.doi.org/10.1007/978-3-642-25385-0_3

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of

asymmetric and symmetric encryption schemes. In Michael J.

Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages

537–554. Springer, Heidelberg, August 1999. doi:10.1007/

3-540-48405-1_34.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A mod-

ular analysis of the Fujisaki-Okamoto transformation. In Yael

Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume

10677 of LNCS, pages 341–371. Springer, Heidelberg, November

2017. doi:10.1007/978-3-319-70500-2_12.

[JZC+17] Haodong Jiang, Zhenfeng Zhang, Long Chen, Hong Wang, and

Zhi Ma. Post-quantum IND-CCA-secure KEM without addi-

tional hash. Cryptology ePrint Archive, Report 2017/1096, 2017.

https://eprint.iacr.org/2017/1096.

[JZM19a] Haodong Jiang, Zhenfeng Zhang, and Zhi Ma. Key encapsulation

mechanism with explicit rejection in the quantum random ora-

cle model. Cryptology ePrint Archive, Report 2019/052, 2019.

https://eprint.iacr.org/2019/052.

[JZM19b] Haodong Jiang, Zhenfeng Zhang, and Zhi Ma. Tighter secu-

rity proofs for generic key encapsulation mechanism in the quan-

tum random oracle model. Cryptology ePrint Archive, Report

2019/134, 2019. https://eprint.iacr.org/2019/134.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal

lattices and learning with errors over rings. In Henri Gilbert,

editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 1–

23. Springer, Heidelberg, May / June 2010. doi:10.1007/

978-3-642-13190-5_1.

[MRH04] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. In-

differentiability, impossibility results on reductions, and applica-

tions to the random oracle methodology. In Moni Naor, editor,

25

http://dx.doi.org/10.1007/3-540-48405-1_34
http://dx.doi.org/10.1007/3-540-48405-1_34
http://dx.doi.org/10.1007/978-3-319-70500-2_12
https://eprint.iacr.org/2017/1096
https://eprint.iacr.org/2019/052
https://eprint.iacr.org/2019/134
http://dx.doi.org/10.1007/978-3-642-13190-5_1
http://dx.doi.org/10.1007/978-3-642-13190-5_1

TCC 2004, volume 2951 of LNCS, pages 21–39. Springer, Hei-

delberg, February 2004. doi:10.1007/978-3-540-24638-1_2.

[SXY18] Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa.

Tightly-secure key-encapsulation mechanism in the quantum ran-

dom oracle model. In Jesper Buus Nielsen and Vincent Ri-

jmen, editors, EUROCRYPT 2018, Part III, volume 10822 of

LNCS, pages 520–551. Springer, Heidelberg, April / May 2018.

doi:10.1007/978-3-319-78372-7_17.

[TU16] Ehsan Ebrahimi Targhi and Dominique Unruh. Post-quantum se-

curity of the Fujisaki-Okamoto and OAEP transforms. In Mar-

tin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II,

volume 9986 of LNCS, pages 192–216. Springer, Heidelberg, Oc-

tober / November 2016. doi:10.1007/978-3-662-53644-5_8.

[XY18] Keita Xagawa and Takashi Yamakawa. (tightly) qcca-secure key-

encapsulation mechanism in the quantum random oracle model.

Cryptology ePrint Archive, Report 2018/838, 2018. https://

eprint.iacr.org/2018/838.

A Proof of Lemma 7

Lemma 7. Denote by εhi the probability that a ThreeBears0 public key

fails to be high-bit-injective. Then for recommended ThreeBears instances,

εhi ≤ 2−409.

Proof. Consider a pk that is not high-bit-injective, and let (m0,m1) be mes-

sages that produce the collision on values

(B0, B1) = (M~b0 + ~e0,M~b1 + ~e1)

where (b0, b1) = (Hb(m0), Hb(m1)) and let

Bδ := (Mb0 + e0)− (Mb1 + e1))

26

http://dx.doi.org/10.1007/978-3-540-24638-1_2
http://dx.doi.org/10.1007/978-3-319-78372-7_17
http://dx.doi.org/10.1007/978-3-662-53644-5_8
https://eprint.iacr.org/2018/838
https://eprint.iacr.org/2018/838

Let (y0,i, y1,i, yδ,i) be the ith of B0, B1 and Bδ respectively. Then

yδ,i = y0,i − y1,i + c mod 210

where the carry c is in the range [−2, 2]. If y0,i and y1,i have the same upper

bits, then y0,i − y1,i ∈ [−63, 63] so that

yδ,i ∈ [0, 65] ∪ [210 − 65, 210−1]

Therefore if two messages m0 and m1 result in the same input to F , then

either ~b0 = ~b1, or b0 6= b1 but M(b0−b1) lies in a set of at most (2 ·65+1)312

values. The first case occurs with probability less than 2−920 − 2−925 for

all recommended instances. The second case happens with probability less

than 2−925d. Summing the probability of these events over all< 2511 message

pairs (m0,m1), we find the overall probability of any of these events to be

< 2−409.

B Proof of Lemma 6 security for ThreeBearsr

Lemma 6. Let A be an IND-CPA adversary against ThreeBearsr, which

instantiates k public keys and at most c challenge ciphertexts per key. Then

AdvIND−CPA−U(A : ThreeBearsr)

≤ 2k(c+ 1) · (Adv((d+1)×d)−I−MLWE(B) + 2−1555)

Proof. This is a standard hybrid argument with k(c+ 1) options. The sim-

ulator B receives an I-MLWE challenge (M,A,B,C), where

• M is a uniform d× d matrix.

• A is either Ms+ e or a d-long random vector, where s, e← χd × χd.

• B is a uniform 1× d matrix.

• C is either Bs+ e′ where e′ ← χ, or a random element of the ring R.

27

For each game i ≤ k, replace the first i−1 public keys with random elements

and the ith with (seed, A), and reprogram the matrix expansion hash so that

uniform(seed) = M . Generate the rest of the keys honestly.

For each game (i + 1)k + j with j < k, replace the jth public key with

(seed, B>), reprogram the matrix expansion hash such that uniform(seed) =

M>, and set the i’th ciphertext to that key with (A, encode(C,m)). Replace

the earlier ciphertexts with uniformly random strings, and generate the later

ones honestly.

Replacing d×d ≤ 16 uniform elements of {0, 1}3120 with n uniform elements

of Z/N produces a distribution which differs by less than n/2−1559, so the

total deviation from uniformity is less than n/2−1555.

After k(c+1) such games, all challenge public keys and challenge ciphertexts

are uniformly random strings, so the adversary’s view is independent of the

challenge bit b. Therefore the adversary wins with probability exactly 1
2 .

Thus the overall win probability is at most 1
2 +k(c+1) ·AdvI−MLWE(B).

C Proof of Lemma 5

Lemma 5. If A is an IND-CPA resp. IND-CCA adversary against ThreeBears0

with advantage ε, and suppose that it requests at most k public keys. Then

there is an IND-CPA resp. IND-CCA adversary B against ThreeBears0,

running in about the same time as A, that has IND-CPA-U resp. IND-CCA-

U advantage

εu ≥ max

(
ε−

(
k

2

)
/s, ε/2−

(
k

3

)
/s2, ε/3−

(
k

4

)
/s3, . . .

)
so that

ε ≤ min

(
εu +

k2

2s1
, 2εu +

k3

3s2
, 3εu +

k4

4s3
, . . .

)
Proof. The algorithm B generates k keys itself and throws away the results,

but records how many collisions occur (or efficiently simulates this step).

28

Suppose that the most common seed occurs n times. This happens with

probability at most
(
k
n

)
/sn−1.

The simulator chooses a uniformly random number j from 1 to n inclusive,

and instantiates and IND-CPA-U resp. IND-CCA-U challenger. It asks this

challenger for m ≤ k keys, where m is the number of seeds that occurred at

least j times. It then generates the k−m other keys with seeds that match

the collision counts from the first step. It returns all these keys in a random

order. When answering queries for the j − 1 keys generated for each seed,

it answers as though the challenge bit b = 0. For the jth key it forwards to

the challenger, and for the j + 1st and onward it answers as though b = 1.

By the standard hybrid argument, for all integers m, B’s advantage is εu ≥
ε/m − δ, where δ ≤

(
k

m+1

)
/sm is the probability that it instantiates more

than m oracles.

D Proof of Lemma 8

Lemma 8. For a certain uniformly random oracle family F , there is a pair

of efficient hash functions Ge(pk,m), Gt(pk,m) such that if pk is high-bit-

injective, then:

• (F,Hb, He) is 0-indifferentiable from (F,Hb, Ge, Gt).

• Gt is a uniformly random oracle which returns a 256-bit value.

• Gt(pk,m) can be calculated from only the ciphertext component B =

Mb + e, except with probability at most εt < 2−319 independently per

message.

Proof. Let F (pk, h) be a random oracle which takes a (4 · 312 · d)-bit input,

and returns a uniformly random (6 · 312 · d)-to-256-bit affine function over

F2. The idea is to set

ĜHt,0(pk,m) := F (high4(B))(low6(B)) where B = MHb(m) +He(m)

29

For most messages m, ĜHt (pk,m) = ĜHt,0(pk,m). To calculate the actual

ĜHt (pk,m), choose a random vector ~v ∈ codomain(Fr) where Fr is a certain

restriction of F . Then

ĜHt (pk,m)

{
ĜHt,0(pk,m) if ~v ∈ codomain(Fr)

~v otherwise

For the vast majority of (pk,m), the value ĜHt (pk,m) = ĜHt,0(pk,m) can

be computed from B. If pk is high-bit-injective, then F is an independent

random affine function for each message and ĜHt (pk, ·) is a uniformly random

oracle.

We now show how to construct Ge and how to emulate He using Ge and Gt.

Recall that each digit of the noise is chosen as

χv :=

−1 with probability v/2

0 with probability 1− v
+1 with probability v/2

or, in the case of BabyBear, as χ1/2 + χv−1/2.

Ge begins by running Hb to produce b, calculating Mb, and choosing certain

parts of each digit ei of e:

• For BabyBear Ge chooses the coins for χv−1/2 and sets v ← 1/2.

• Ge sets each ei = 0 with probability 1− 2v.

• For the digits that aren’t forced to 0, Ge chooses a sign si ∈ {±1}; ei
will be either 0 or si.

• Let Pij be the condition that high 4-bits of the ith coefficient of Mb+e

still depends on ei. With negligible probability (< 2−1559) the graph is

cyclic, in which case Ge chooses the rest of e immediately. Otherwise

in topological order, Ge determines whether Pii holds (it does with

probability 1− 1/64) and if so it chooses ei at random from {0, si}.

Call a variable ei free if it is still undetermined by the above procedure, be-

cause Pii doesn’t hold. Assuming the above graph is acyclic, the probability

30

that f variables are free is then at least(
312 · d
f

)
· pf · (1− p)312·d−f

where p = v − 1/64. Each bit of low6(Mb+ e) is either fixed, or is equal to

one of the free variables or its negation. Since an f -to-r bit affine equation

is soluble with probability at least 1 − 2r−f , there is at least one preimage

of Gt(pk,m) with probability at least

1− 2−1559 −
n∑

f=256

(
312 · d
f

)
· pf · (1− p)312·d−f > 1− 2−319

where (d, p) = (2, 1− 1
64), (3, 13

16 −
1
64), (4, 9

16 −
1
64) for BabyBear, Mam-

aBear and PapaBear respectively.

Let Ef be the subspace Ff2 of all the remaining choices of e, with a 0-

component meaning ei = 0 and 1 component meaning ei = si. Let ef

denote the actual choices made for a given e. Let Fr be the map F (pk,m)

restricted to Ef . Ge outputs a random element k ∈ ker Fr ⊂ Ef . Finally,

it samples ~w ← Gt(pk,m); if ~w /∈ range(Fr), then Ge outputs ~v ← ~w;

otherwise, it outputs ~v uniformly at random in range(Fr).

The map ĜHe (pk,m) performs the above steps, but at each step it chooses

the restriction on ei which is consistent with e := He(pk,m). For the final

step, if ~v ∈ range(Fr) the algorithm chooses k = e − e0, where e0 is the

lexicographically least preimage of ĜHe (pk,m) under Fr.

In the opposite direction, the map ĤG
e (pk,m) calculates e by running Ge,

which determines the high bits of Mb+e; it then calculates F (high4)(Mb+e)

and Fr. If Gt(pk,m) ∈ range(Fr), it outputs ~v
R← range(Fr) and finds e0 as

the lexicographically least solution to

F (high4)(e0) = Gt(pk,m)

which is consistent with the choices made by Ge. It chooses ef = e0 + k.

If, on the other hand, Gt(pk,m) /∈ range(Fr), then ĤG
e (pk,m) outputs

~v = Gt(pk,m), and ef uniformly at random. This completes the indif-

ferentiability construction.

31

	Introduction and Related Work
	Preliminaries
	Quantum and semi-classical oracles
	Indifferentiable hashing

	Security model
	Simplifications
	Key generation without the seed
	No collisions in the matrix seed
	As a simple PKE algorithm

	IND-CPA-U security proof
	As a KEM

	IND-CCA security proof
	High and low bits
	High-bit-injective keys
	Main theorem
	Proof of thm:cca
	Summing up
	One-way vs indistinguishability

	Conclusions
	Acknowledgements
	Proof of lem:highind
	Proof of thm:I-MLWE security for ThreeBears r
	Proof of lem:nocoll
	Proof of lem:indif

